This paper presents a suboptimal three-dimensional guidance law to intercept unknown maneuvering targets with terminal angle constraint using multivariable control design. The presented guidance law is essentially a composite control method, which is constructed through a combination of standard continuous model predictive control (MPC) and adaptive multivariable sliding mode disturbance observer (SMDO). More specifically, the MPC method is utilized to obtain optimal line-of-sight (LOS) angle tracking performance for nonmaneuvering targets, while the SMDO technique is used to estimate and compensate for the unknown target maneuver online. By virtue of the adaptive nature, the proposed guidance law does not require any information on the bounds of target maneuver and its gradient except for their existence. The stability of the closed-loop guidance system is also analyzed by using Lyapunov function method. Simulation results clearly confirm the effectiveness of the proposed formulation against a maneuvering target.

References

1.
Murtaugh
,
S. A.
, and
Criel
,
H. E.
,
1996
, “
Fundamentals of Proportional Navigation
,”
IEEE Spectrum
,
3
(
12
), pp.
75
85
.
2.
Budiyono
,
A.
, and
Rachman
,
H.
,
2011
, “
Proportional Guidance and CDM Control Synthesis for a Short-Range Homing Surface-to-Air Missile
,”
J. Aerosp. Eng.
,
25
(
2
), pp.
168
177
.
3.
Nesline
,
F. W.
, and
Zarchan
,
P.
,
1981
, “
A New Look at Classical Versus Modern Homing Missile Guidance
,”
J. Guid. Control Dyn.
,
4
(
1
), pp.
78
85
.
4.
Zhou
,
D.
,
Sun
,
S.
, and
Teo
,
K. L.
,
2009
, “
Guidance Laws With Finite Time Convergence
,”
J. Guid. Control Dyn.
,
32
(
6
), pp.
1838
1846
.
5.
Zhou
,
D.
,
Qu
,
P.
, and
Sun
,
S.
,
2013
, “
A Guidance Law With Terminal Impact Angle Constraint Accounting for Missile Autopilot
,”
ASME J. Dyn. Syst. Meas. Control
,
135
(
5
), p.
051009
.
6.
Kim
,
B. S.
,
Lee
,
J. G.
, and
Han
,
H. S.
,
1998
, “
Biased PNG Law for Impact With Angular Constraint
,”
IEEE Trans. Aerosp. Electron. Syst.
,
34
(
1
), pp.
277
288
.
7.
Manchester
,
I. R.
, and
Savkin
,
A. V.
,
2006
, “
Circular-Navigation-Guidance Law for Precision Missile/Target Engagements
,”
J. Guid. Control Dyn.
,
29
(
2
), pp.
314
320
.
8.
Erer
,
K. S.
, and
Merttopçuoglu
,
O.
,
2012
, “
Indirect Impact-Angle-Control Against Stationary Targets Using Biased Pure Proportional Navigation
,”
J. Guid. Control Dyn.
,
35
(
2
), pp.
700
704
.
9.
Lee
,
C. H.
,
Kim
,
T. H.
, and
Tahk
,
M. J.
,
2013
, “
Interception Angle Control Guidance Using Proportional Navigation With Error Feedback
,”
J. Guid. Control Dyn.
,
36
(
5
), pp.
1556
1561
.
10.
Zhang
,
Y.
,
Ma
,
G.
, and
Liu
,
A.
,
2013
, “
Guidance Law With Impact Time and Impact Angle Constraints
,”
Chin. J. Aeronaut.
,
26
(
4
), pp.
960
966
.
11.
Ryoo
,
C. K.
,
Cho
,
H.
, and
Tahk
,
M. J.
,
2005
, “
Optimal Guidance Laws With Terminal Impact Angle Constraint
,”
J. Guid. Control Dyn.
,
28
(
4
), pp.
724
732
.
12.
Ryoo
,
C. K.
,
Cho
,
H.
, and
Tahk
,
M. J.
,
2006
, “
Time-to-Go Weighted Optimal Guidance With Impact Angle Constraints
,”
IEEE Trans. Control Syst. Technol.
,
14
(
3
), pp.
483
492
.
13.
Ratnoo
,
A.
, and
Ghose
,
D.
,
2009
, “
State-Dependent Riccati-Equation-Based Guidance Law for Impact-Angle-Constrained Trajectories
,”
J. Guid. Control Dyn.
,
32
(
1
), pp.
320
326
.
14.
Lee
,
Y. I.
,
Kim
,
S. H.
,
Lee
,
J. I.
, and
Tahk
,
M. J.
,
2012
, “
Analytic Solutions of Generalized Impact-Angle-Control Guidance Law for First-Order Lag System
,”
J. Guid. Control Dyn.
,
36
(
1
), pp.
96
112
.
15.
Kumar
,
S. R.
,
Rao
,
S.
, and
Ghose
,
D.
,
2012
, “
Sliding-Mode Guidance and Control for All-Aspect Interceptors With Terminal Angle Constraints
,”
J. Guid. Control Dyn.
,
35
(
4
), pp.
1230
1246
.
16.
Cho
,
H.
,
Ryoo
,
C. K.
,
Tsourdos
,
A.
, and
White
,
B.
,
2014
, “
Optimal Impact Angle Control Guidance Law Based on Linearization About Collision Triangle
,”
J. Guid. Control Dyn.
,
37
(
3
), pp.
958
964
.
17.
Shima
,
T.
,
2011
, “
Intercept-Angle Guidance
,”
J. Guid. Control Dyn.
,
34
(
2
), pp.
484
492
.
18.
Kumar
,
S. R.
,
Rao
,
S.
, and
Ghose
,
D.
,
2014
, “
Nonsingular Terminal Sliding Mode Guidance With Impact Angle Constraints
,”
J. Guid. Control Dyn.
,
37
(
4
), pp.
1114
1130
.
19.
Xiong
,
S.
,
Wang
,
W.
,
Liu
,
X.
,
Wang
,
S.
, and
Chen
,
Z.
,
2014
, “
Guidance Law Against Maneuvering Targets With Intercept Angle Constraint
,”
ISA Trans.
,
53
(
4
), pp.
1332
1342
.
20.
He
,
S.
,
Lin
,
D.
, and
Wang
,
J.
,
2015
, “
Continuous Second-Order Sliding Mode Based Impact Angle Guidance Law
,”
Aerosp. Sci. Technol.
,
41
, pp.
199
208
.
21.
Zhang
,
Z.
,
Li
,
S.
, and
Luo
,
S.
,
2013
, “
Composite Guidance Laws Based on Sliding Mode Control With Impact Angle Constraint and Autopilot Lag
,”
Trans. Inst. Meas. Control
,
35
(
6
), pp.
764
776
.
22.
Zhang
,
Z.
,
Li
,
S.
, and
Luo
,
S.
,
2013
, “
Terminal Guidance Laws of Missile Based on ISMC and NDOB With Impact Angle Constraint
,”
Aerosp. Sci. Technol.
,
31
(
1
), pp.
30
41
.
23.
Yang
,
C. D.
, and
Yang
,
C. C.
,
1996
, “
Analytical Solution of Three-Dimensional Realistic True Proportional Navigation
,”
J. Guid. Control Dyn.
,
19
(
3
), pp.
569
577
.
24.
Yoon
,
M. G.
,
2010
, “
Relative Circular Navigation Guidance for Three-Dimensional Impact Angle Control Problem
,”
J. Aerosp. Eng.
,
23
(
4
), pp.
300
308
.
25.
Maity
,
A.
,
Oza
,
H. B.
, and
Padhi
,
R.
,
2014
, “
Generalized Model Predictive Static Programming and Angle-Constrained Guidance of Air-to-Ground Missiles
,”
J. Guid. Control Dyn.
,
37
(
6
), pp.
1897
1913
.
26.
Chen
,
W. H.
,
Balance
,
D. J.
, and
Gawthrop
,
P. J.
,
2003
, “
Optimal Control of Nonlinear Systems: A Predictive Control Approach
,”
Automatica
,
39
(
4
), pp.
633
641
.
27.
Yan
,
H.
, and
Ji
,
H. B.
,
2012
, “
Guidance Laws Based on Input-to-State Stability and High-Gain Observers
,”
IEEE Trans. Aerosp. Electron. Syst.
,
48
(
3
), pp.
2518
2529
.
28.
Talole
,
S. E.
,
Ghosh
,
A.
, and
Phadke
,
S. B.
,
2006
, “
Proportional Navigation Guidance Using Predictive and Time Delay Control
,”
Control Eng. Pract.
,
14
(
12
), pp.
1445
1453
.
29.
Shtessel
,
Y. B.
,
Shkolnikov
, I
. A.
, and
Levant
,
A.
,
2007
, “
Smooth Second-Order Sliding Modes: Missile Guidance Application
,”
Automatica
,
43
(
8
), pp.
1470
1476
.
30.
Phadke
,
S. B.
, and
Talole
,
S. E.
,
2012
, “
Sliding Mode and Inertial Delay Control Based Missile Guidance
,”
IEEE Trans. Aerosp. Electron. Syst.
,
48
(
4
), pp.
3331
3346
.
31.
He
,
S.
,
Wang
,
J.
, and
Lin
,
D.
,
2015
, “
Composite Guidance Laws Using Higher Order Sliding Mode Differentiator and Disturbance Observer
,”
Proc. Inst. Mech. Eng., Part G
,
229
(
13
), pp.
2397
2415
.
32.
Bhat
,
S. P.
, and
Bernstein
,
D. S.
,
1998
, “
Continuous Finite-Time Stabilization of the Translational and Rotational Double Integrators
,”
IEEE Trans. Autom. Control
,
43
(
5
), pp.
678
682
.
33.
Yu
,
S.
,
Yu
,
X.
,
Shirinzadeh
,
B.
, and
Man
,
Z.
,
2005
, “
Continuous Finite-Time Control for Robotic Manipulators With Terminal Sliding Mode
,”
Automatica
,
41
(
11
), pp.
1957
1964
.
You do not currently have access to this content.