In this paper, a new iterative algorithm is developed using control theoretic approach to find the minimum norm solution of underdetermined problems. The minimum norm solution is obtained by applying the optimization technique. The accuracy and convergence rate of the proposed algorithm are ensured using the framework of linear feedback control theory. The performances of the proposed method, the QR decomposition method, and the least square minimal residue (LSMR) method are compared numerically. The number of iterations in the proposed algorithm is comparable with the LSMR method. Finally, the developed algorithm is applied to the control allocation problem and its effectiveness is demonstrated through a detailed simulation study.
Issue Section:
Technical Brief
References
1.
Donoho
, D. L.
, 2006
, “For Most Large Underdetermined Systems of Linear Equations the Minimal -Norm Solution Is Also the Sparsest Solution
,” Commun. Pure Appl. Math.
, 59
(6
), pp. 797
–829
.2.
Golub
, H. G.
, and Loan
, F. C. V.
, 1996
, Matrix Computations
, 3rd ed., The Johns Hopkins University Press
, Baltimore
.3.
Higham
, N. J.
, 2002
, Accuracy and Stability of Numerical Algorithms
, Society for Industrial and Applied Mathematics
, Philadelphia
.4.
Paige
, C.
, and Saunders
, M.
, 1982
, “LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares
,” ACM Trans. Math. Software
, 8
(1
), pp. 43
–71
.5.
Fong
, D. C.
, and Saunders
, M. A.
, 2011
, “LSMR: An Iterative Algorithm for Sparse Least-Squares Problems
,” SIAM J. Sci. Comput.
, 33
(5
), pp. 2950
–2971
.6.
Bhaya
, A.
, and Kaszkurewicz
, E.
, 2003
, “Iterative Methods as Dynamical Systems With Feedback Control
,” IEEE Conference on Decision and Control
, Vol. 3
, pp. 2374
–2380
.7.
Bhaya
, A.
, and Kaszkurewicz
, E.
, 2006
, Control Perspectives on Numerical Algorithms and Matrix Problems (Advances in Design and Control), Vol. 10
, Society for Industrial and Applied Mathematics
, Philadelphia
.8.
Bhaya
, A.
, and Kaszkurewicz
, E.
, 2007
, “A Control-Theoretic Approach to the Design of Zero Finding Numerical Methods
,” IEEE Trans. Autom. Control
, 52
(6
), pp. 1014
–1026
.9.
Helmke
, U.
, Jordan
, J.
, and Lanzon
, A.
, 2006
, “A Control Theory Approach to Linear Equation Solvers
,” 17th International Symposium on Mathematical Theory of Networks and Systems
, pp. 1401
–1407
.10.
Kashima
, K.
, and Yamamoto
, Y.
, 2007
, “System Theory for Numerical Analysis
,” Automatica
, 43
(7
), pp. 1156
–1164
.11.
Bhaya
, A.
, Bliman
, P.
, and Pazos
, F.
, 2009
, “Control-Theoretic Design of Iterative Methods for Symmetric Linear Systems of Equations
,” IEEE Conference on Decision and Control
(CDC/CCC
), Shanghai, Dec. 15–18, pp. 115
–120
.12.
Kishore
, W. C. A.
, Sen
, S.
, Ray
, G.
, and Ghoshal
, T. K.
, 2008
, “Dynamic Control Allocation for Tracking Time-Varying Control Demand
,” J. Guid., Control, Dyn.
, 31
(4
), pp. 1150
–1157
.13.
Naskar
, A. K.
, Patra
, S.
, and Sen
, S.
, 2015
, “Reconfigurable Direct Allocation for Multiple Actuator Failures
,” IEEE Trans. Control Syst. Technol.
, 23
(1
), pp. 397
–405
.14.
Johansen
, T.
, Fossen
, T.
, and Berge
, S.
, 2004
, “Constrained Nonlinear Control Allocation With Singularity Avoidance Using Sequential Quadratic Programming
,” IEEE Trans. Control Syst. Technol.
, 12
(1
), pp. 211
–216
.15.
Harkegard
, O.
, and Glad
, S. T.
, 2005
, “Resolving Actuator Redundancy—Optimal Control vs. Control Allocation
,” Automatica
, 41
(1
), pp. 137
–144
.16.
Zaccarian
, L.
, 2009
, “Dynamic Allocation for Input Redundant Control Systems
,” Automatica
, 45
(6
), pp. 1431
–1438
.17.
Bodson
, M.
, and Frost
, S. A.
, 2011
, “Load Balancing in Control Allocation
,” J. Guid., Control, Dyn.
, 34
(2
), pp. 380
–387
.18.
Hamayun
, M. T.
, Edwards
, C.
, and Alwi
, H.
, 2013
, “A Fault Tolerant Control Allocation Scheme With Output Integral Sliding Modes
,” Automatica
, 49
(6
), pp. 1830
–1837
.19.
Francis
, B.
, and Wonham
, W.
, 1976
, “The Internal Model Principle of Control Theory
,” Automatica
, 12
(5
), pp. 457
–465
.20.
Zhou
, K.
, Doyle
, J. C.
, and Glover
, K.
, 1996
, Robust and Optimal Control
, Prentice Hall
, Englewood Cliffs, NJ
.21.
Gahinet
, P.
, and Apkarian
, P.
, 1994
, “Linear Matrix Inequality Approach to H∞ Control
,” Int. J. Robust Nonlinear Control
, 4
(4
), pp. 421
–448
.22.
Gahinet
, P.
, Nemirovskii
, A.
, Laub
, A.
, and Chilali
, M.
, 1995
, LMI Control Toolbox User's Guide
, The MathWorks, Inc.
, Natick, MA
.23.
Kishore
, W. C. A.
, Dasgupta
, S.
, Ray
, G.
, and Sen
, S.
, 2013
, “Control Allocation for an Over-Actuated Satellite Launch Vehicle
,” Aerosp. Sci. Technol.
, 28
(1
), pp. 56
–71
.Copyright © 2016 by ASME
You do not currently have access to this content.