In this work, we investigate the stability and integrity of parallel-plate microelectromechanical systems resonators using a delayed feedback controller. Two case studies are investigated: a capacitive sensor made of cantilever beams with a proof mass at their tip and a clamped-clamped microbeam. Dover-cliff integrity curves and basin-of-attraction analysis are used for the stability assessment of the frequency response of the resonators for several scenarios of positive and negative gain in the controller. It is found that in the case of a positive gain, a velocity or a displacement feedback controller can be used to effectively enhance the stability of the resonators. This is confirmed by an increase in the area of the basin of attraction of the resonator and in shifting the Dover-cliff curve to higher values. On the other hand, it is shown that a negative gain can significantly weaken the stability and integrity of the resonators. This can be of useful use in MEMS for actuation applications, such as in the case of capacitive switches, to lower the activation voltage of these devices and to ensure their trigger under all initial conditions.

1.
Gottwald
,
J.
,
Virgin
,
L.
, and
Dowell
,
E.
, 1995, “
Routes to Escape From an Energy Well
,”
J. Sound Vib.
0022-460X,
187
, pp.
133
144
.
2.
Thompson
,
J. M. T.
, 1989, “
Chaotic Phenomena Triggering the Escape From a Potential Well
,”
Proc. R. Soc. London, Ser. A
0950-1207,
421
, pp.
195
225
.
3.
Thompson
,
J.
, and
Stewart
,
H.
, 2001,
Nonlinear Dynamics and Chaos
,
Wiley
,
New York
.
4.
Nayfeh
,
A.
, and
Balachandran
,
B.
, 1995,
Applied Nonlinear Dynamics
,
Wiley
,
New York
.
5.
Nayfeh
,
A. H.
, and
Sanchez
,
N. E.
, 1988, “
Chaos and Dynamic Instability in the Rolling Motion of Ships
,”
Proceedings of the17th Symposium on Naval Hydrodynamics
, Hague, The Netherlands, pp.
617
631
.
6.
Soliman
,
M. S.
, 1990, “
An Analysis of Ship Stability Based on Transient Motions
,”
Proceedings of the Fourth International Conference on the Stability of Ships and Ocean Vehicles
, Naples, Italy.
7.
Basso
,
M.
,
Giarre
,
L.
,
Dahleh
,
M.
, and
Mezic
,
I.
, 2000, “
Complex Dynamics in a Harmonically Excited Lennard-Jones Oscillator: Microcantilever-Sample Interaction in Scanning Probe Microscopes
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
122
, pp.
240
245
.
8.
Hornstein
,
S.
, and
Gottlieb
,
O.
, 2008, “
Nonlinear Dynamics, Stability and Control of the Scan Process in Noncontacting Atomic Force Microscopy
,”
Nonlinear Dyn.
0924-090X,
54
, pp.
93
122
.
9.
Litak
,
G.
,
Syta
,
A.
, and
Borowiec
,
M.
, 2007, “
Suppression of Chaos by Weak Resonant Excitation in a Non-Linear Oscillator With a Non-Symmetric Potential
,”
Chaos, Solitons Fractals
0960-0779,
32
, pp.
694
701
.
10.
Ashhab
,
M.
,
Salapaka
,
M. V.
,
Dahleh
,
M.
, and
Mezic
,
I.
, 1999, “
Melnikov-Based Dynamical Analysis of Microcantilevers in Scanning Probe Microscopy
,”
Nonlinear Dyn.
0924-090X,
20
, pp.
197
220
.
11.
Seoane
,
M.
,
Zambrano
,
S.
,
Euzzor
,
S.
,
Meucci
,
R.
,
Arecchi
,
F.
, and
Sanjuán
,
M.
, 2008, “
Avoiding Escapes in Open Dynamical Systems Using Phase Control
,”
Phys. Rev. E
1063-651X,
78
, p.
016205
.
12.
Cao
,
H.
, 2005, “
Primary Resonant Optimal Control for Homoclinic Bifurcations in Single-Degree-of-Freedom Nonlinear Oscillators
,”
Chaos, Solitons Fractals
0960-0779,
24
, pp.
1387
1398
.
13.
Qu
,
Z.
,
Hu
,
G.
,
Yang
,
G.
, and
Qin
,
G.
, 1995, “
Phase Effect in Taming Nonautonomous Chaos by Weak Harmonic Perturbations
,”
Phys. Rev. Lett.
0031-9007,
74
, pp.
1736
1739
.
14.
Lenci
,
S.
, and
Rega
,
G.
, 2006, “
Control of Pull-In Dynamics in a Nonlinear Thermoelastic Electrically Actuated Microbeam
,”
J. Micromech. Microeng.
0960-1317,
16
, pp.
390
401
.
15.
Rega
,
G.
, and
Lenci
,
S.
, 2008, “
Dynamical Integrity and Control of Nonlinear Mechanical Oscillators
,”
J. Vib. Control
1077-5463,
14
, pp.
159
179
.
16.
Pyragas
,
K.
, 1992, “
Continuous Control of Chaos by Self-Controlling Feedback
,”
Phys. Lett. A
0375-9601,
170
, pp.
421
428
.
17.
Nakajima
,
H.
, and
Ueda
,
Y.
, 1998, “
Half-Period Delayed Feedback Control for Dynamical Systems With Symmetries
,”
Phys. Rev. E
1063-651X,
58
, pp.
1757
1763
.
18.
Yamasue
,
K.
, and
Hikihara
,
T.
, 2006, “
Persistence of Chaos in a Time-Delayed-Feedback Controlled Duffing System
,”
Phys. Rev. E
1063-651X,
73
, p.
036209
.
19.
Yamasue
,
K.
, and
Hikihara
,
T.
, 2006, “
Control of Microcantilevers in Dynamic Force Microscopy Using Time Delayed Feedback
,”
Rev. Sci. Instrum.
0034-6748,
77
, pp.
053703
.
20.
Hikihara
,
T.
, and
Kawagoshi
,
T.
, 1996, “
An Experimental Study on Stabilization of Unstable Periodic Motion in Magneto-Elastic Chaos
,”
Phys. Lett. A
0375-9601,
211
, pp.
29
36
.
21.
Alsaleem
,
F.
,
Younis
,
M.
, and
Ouakad
,
H.
, 2009, “
On the Nonlinear Resonances and Dynamic Pull-In of Electrostatically Actuated Resonators
,”
J. Micromech. Microeng.
0960-1317,
19
, p.
045013
.
22.
Alsaleem
,
F.
, and
Younis
,
M.
, 2009, “
Stabilizing the Dynamics of Electrostatic MEMS Resonators Using Delayed Feedback Controller
,”
Proceedings of the Design Engineering Technical Conference and Computer and Information in Engineering Conference
, San Diego, CA, Paper No. DETC2009-86903.
24.
Nayfeh
,
A.
,
Younis
,
M.
, and
Abdel-Rahman
,
E.
, 2007, “
Dynamic Pull-In Phenomenon in MEMS Resonators
,”
Nonlinear Dyn.
0924-090X,
48
, pp.
153
163
.
25.
Younis
,
M. I.
,
Abdel-Rahman
,
E. M.
, and
Nayfeh
,
A. H.
, 2003, “
A Reduced-Order Model for Electrically Actuated Microbeam-Based MEMS
,”
J. Microelectromech. Syst.
1057-7157,
12
, pp.
672
680
.
You do not currently have access to this content.