Cylinder pressure is one of the most important parameters characterizing the combustion process in an internal combustion engine. The recent developments in engine control technologies suggest the use of cylinder pressure as a feedback signal for closed-loop combustion control. However, the sensors measuring in-cylinder pressure are typically subject to noise and offset issues, requiring signal processing methods to be applied to obtain a sufficiently accurate pressure trace. The signal conditioning implies a considerable computational burden, which ultimately limits the use of cylinder pressure sensing to laboratory testing, where the signal can be processed off-line. In order to enable closed-loop combustion control through cylinder pressure feedback, a real-time algorithm that extracts the pressure signal from the in-cylinder sensor is proposed in this study. The algorithm is based on a crank-angle based engine combustion of that predicts the in-cylinder pressure from the definition of a burn rate function. The model is then adapted to model-based estimation by applying an extended Kalman filter in conjunction with a recursive least-squares estimation scheme. The estimator is tested on a high-fidelity diesel engine simulator as well as on experimental data obtained at various operating conditions. The results obtained show the effectiveness of the estimator in reconstructing the cylinder pressure on a crank-angle basis and in rejecting measurement noise and modeling errors. Furthermore, a comparative study with a conventional signal processing method shows the advantage of using the derived estimator, especially in the presence of high signal noise (as frequently happens with low-cost sensors).

1.
van Nieuwstadt
,
M. J.
,
Kolmanovsky
,
I. V.
,
Moraal
,
P. E.
,
Stefanopoulou
,
A.
, and
Jankovic
,
M.
, 2000, “
EGR-VGT Control Scheme: Experimental Comparison for a High-Speed Diesel Engine
,”
IEEE Control Syst. Mag.
0272-1708,
20
(
3
), pp.
63
79
.
2.
Guzzella
,
L.
, and
Amstutz
,
A.
, 1998, “
Control of Diesel Engine
,”
IEEE Control Syst. Mag.
0272-1708,
18
(
5
), pp.
53
71
.
3.
Utkin
,
V.
,
Chang
,
H.
,
Kolmanovsky
,
I.
, and
Cook
,
J.
, 2000, “
Sliding Mode Control for Variable Geometry Turbocharged Diesel Engines
,”
Proceedings of the American Control Conference
, Jun., pp.
584
588
.
4.
Jankovic
,
M.
, and
Kolmanovsky
,
I.
, 1998, “
Robust Nonlinear Controller for Turbocharged Diesel Engines
,”
Proceedings of the American Control Conference
, Jun., Vol.
3
, pp.
1389
1394
.
5.
Plianos
,
A.
,
Achir
,
A.
,
Stobart
,
R.
,
Langlois
,
N.
, and
Chafouk
,
H.
, 2007, “
Dynamic Feedback Linearization Based Control Synthesis of the Turbocharged Diesel Engine
,”
Proceedings of the American Control Conference
, Jul., pp.
4407
4412
.
6.
Kolmanovski
,
I.
,
Stefanopoulou
,
A.
,
Moraal
,
P.
, and
Nieuwstadt
,
M. V.
, 1997, “
Issues in Modelling and Control of Intake Flow in Variable Geometry Turbocharged Engines
,”
Proceedings of the 18th IFIP Conference on System Modelling and Optimization
, p.
436
.
7.
Kolmanovski
,
I.
,
Stefanopoulou
,
A.
,
Moraal
,
P.
,
Nieuwstadt
,
M. V.
,
Wood
,
P.
, and
Criddle
,
M.
, 1998, “
Decentralized and Multivariable Designs for EGR-VGT Control of Diesel Engines
,”
Advances in Automotive Control 1998: A Proceedings Volume From the Second IFAC Workshop
.
8.
Stefanopoulou
,
A. G.
,
Kolmanovsky
,
I.
, and
Freudenberg
,
J. S.
, 2000, “
Control of Variable Geometry Turbocharged Diesel Engines for Reduced Emissions
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
8
(
4
), pp.
733
745
.
9.
Bosch
,
R.
, 2008, GmbH,
Diesel-Engine Management Handbook
,
Bentley
,
Cambridge, MA
.
10.
Yoon
,
M.
,
Lee
,
K.
, and
Sunwoo
,
M.
, 2007, “
A Method for Combustion Phasing Control Using Cylinder Pressure Measurement in a CRDI Diesel Engine
,”
Mechatronics
0957-4158,
17
(
9
), pp.
469
479
.
11.
Leonhardt
,
S.
,
Muller
,
N.
, and
Isermann
,
R.
, 1999, “
Methods for Engine Supervision and Control Based on Cylinder Pressure Information
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
4
(
3
), pp.
235
245
.
12.
Beasley
,
M.
,
Cornwell
,
R.
,
Fussey
,
P.
,
King
,
R.
,
Noble
,
A.
,
Salamon
,
T.
, and
Truscott
,
A.
, 2006, “
Reducing Diesel Emissions Dispersion by Coordinated Combustion Feedback Control
,” SAE Technical Paper.
13.
Shaver
,
G.
,
Roelle
,
M.
, and
Gerdes
,
C.
, 2005, “
Decoupled Control of Combustion Timing and Work Output in Residual-Affected HCCI Engines
,”
Proceedings of the American Control Conference
, Jun.
14.
Hülser
,
H.
,
Neunteufl
,
K.
,
Roduner
,
C.
,
Weißbäck
,
M. L. B.
, and
Glensvig
,
M.
, 2006, “
EmIQ: Intelligent Combustion and Control for Tier2 Bin5 Diesel Engines
,” SAE Technical Paper.
15.
Husted
,
H.
,
Kruger
,
D.
,
Fattic
,
G.
,
Ripley
,
G.
, and
Kelly
,
E.
, 2007, “
Cylinder Pressure-Based Control of Pre-Mixed Diesel Combustion
,” SAE Technical Paper.
16.
Kumar
,
R.
,
Zheng
,
M.
,
Asad
,
U.
, and
Reader
,
G. T.
, 2007, “
Heat-Release-Based Adaptive Control to Improve Low Temperature Diesel Engine Combustion
,” SAE Technical Paper.
17.
Corti
,
E.
,
Moro
,
D.
, and
Solieri
,
L.
, 2007, “
Real-Time Evaluation of IMEP and ROHR-Related Parameters
,” SAE Technical Paper No. 2007-24-0068.
18.
Doebelin
,
E. O.
, 1989,
Measurement Systems: Application and Design
,
McGraw-Hill
,
New York
.
19.
Rizzoni
,
G.
, and
Ribbens
,
W.
, 1989, “
Crankshaft Position Measurement for Engine Testing, Control, and Diagnosis
,” pp.
423
436
.
20.
Lee
,
K.
,
Yoon
,
M.
, and
Sunwoo
,
M.
, 2008, “
A Study on Pegging Methods for Noisy Cylinder Pressure Signal
,”
Control Eng. Pract.
0967-0661,
16
, pp.
922
929
.
21.
Klein
,
M.
,
Eriksson
,
L.
, and
Aslund
,
J.
, 2006, “
Compression Ratio Estimation Based on Cylinder Pressure Data
,”
Control Eng. Pract.
0967-0661,
14
, pp.
197
211
.
22.
Klein
,
P.
,
Schmidt
,
M.
, and
Loffeld
,
O.
, 2007, “
Estimation of the Cylinder Pressure Offset and Polytropic Exponent Using Extended Kalman Filter
,”
Fifth IFAC Symposium on Advances in Automotive Control
, Vol.
5
.
23.
Al-Durra
,
A.
,
Canova
,
M.
, and
Yurkovich
,
S.
, 2009, “
Application of Extended Kalman Filter to On-Line Diesel Engine Cylinder Pressure Estimation
,”
Proceedings of the 2009 Dynamic System and Control Conference
, Oct., p.
2538
.
24.
Canova
,
M.
,
Garcin
,
R.
,
Midlam-Mohler
,
S.
,
Guezennec
,
Y.
, and
Rizzoni
,
G.
, 2005, “
A Control-Oriented Model of Combustion Process in a HCCI Diesel Engine
,”
Proceedings of the American Control Conference
, Jun.
25.
Canova
,
M.
,
Midlam-Mohler
,
S.
,
Guezennec
,
Y.
, and
Rizzoni
,
G.
, 2009, “
Mean Value Modeling and Analysis of HCCI Diesel Engines With External Mixture Formation
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
131
(
1
), p.
011002
.
26.
Canova
,
M.
,
Sevel
,
K.
,
Guezennec
,
Y.
, and
Yurkovich
,
S.
, 2006, “
Control of the Start/Stop of a Diesel Engine in a Parallel HEV: Modeling and Experiments
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
, Nov., p.
15611
.
27.
Heywood
,
J. B.
, 1988,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
28.
Woschni
,
G.
, 1967, “
A Universally Applicable Equation for the Istantaneous Heat Transfer Coefficient in the Internal Combustion Engine
,” SAE Technical Paper No. 670931.
29.
Ponti
,
F.
,
Serra
,
G.
, and
Siviero
,
C.
, 2004, “
A Phenomenological Combustion Model for Common Rail Multijet Diesel Engines
,”
Proceedings of the ASME ICE Fall Technical Conference
.
30.
Watson
,
N.
, and
Janota
,
M.
, 1982,
Turbocharging the Internal Combustion Engine
,
Macmillan
,
New York
.
31.
Zhao
,
H.
, and
Ladommatos
,
N.
, 2001,
Engine Combustion Instrumentation and Diagnostics
,
Society of Automotive Engineers
,
Warrendale, PA
.
32.
Mendel
,
J. M.
, 1995,
Lessons in Estimation Theory for Signal Processing Communications and Control
,
Prentice-Hall
,
Englewood-Cliffs, NJ
.
33.
Bay
,
J. S.
, 1999,
Fundamentals of Linear State Space Systems
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.