Smith predictorlike designs for compensation of arbitrarily long input delays are commonly available only for finite-dimensional systems. Only very few examples exist, where such compensation has been achieved for partial differential equation (PDE) systems, including our recent result for a parabolic (reaction-diffusion) PDE. In this paper, we address a more challenging wave PDE problem, where the difficulty is amplified by allowing all of this PDE’s eigenvalues to be a distance to the right of the imaginary axis. Antidamping (positive feedback) on the uncontrolled boundary induces this dramatic form of instability. We develop a design that compensates an arbitrarily long delay at the input of the boundary control system and achieves exponential stability in closed-loop. We derive explicit formulae for our controller’s gain kernel functions. They are related to the open-loop solutions of the antistable wave equation system over the time period of input delay (this simple relationship is the result of the design approach).

1.
Asl
,
F. M.
, and
Ulsoy
,
A. G.
, 2003, “
Analysis of a System of Linear Delay Differential Equations
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
125
(
2
), pp.
215
223
.
2.
Fazelinia
,
H.
,
Sipahi
,
R.
, and
Olgac
,
N.
, 2007, “
Stability Robustness Analysis of Multiple Time-Delayed Systems Using “Building Block” Concept
,”
IEEE Trans. Autom. Control
0018-9286,
52
, pp.
799
810
.
3.
Olgac
,
N.
,
Ergenc
,
A. F.
, and
Sipahi
,
R.
, 2005, “
Delay Scheduling: A New Concept for Stabilization in Multiple Delay Systems
,”
J. Vib. Control
1077-5463,
11
, pp.
1159
1172
.
4.
Olgac
,
N.
, and
Sipahi
,
R.
, 2002, “
An Exact Method for the Stability Analysis of Time Delayed LTI Systems
,”
IEEE Trans. Autom. Control
0018-9286,
47
, pp.
793
797
.
5.
Olgac
,
N.
, and
Sipahi
,
R.
, 2004, “
A Practical Method for Analyzing the Stability of Neutral Type LTI-Time Delayed Systems
,”
Automatica
0005-1098,
40
, pp.
847
853
.
6.
Olgac
,
N.
, and
Sipahi
,
R.
, 2005, “
The Cluster Treatment of Characteristic Roots and the Neutral Type Time-Delayed Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
127
, pp.
88
97
.
7.
Olgac
,
N.
,
Sipahi
,
R.
, and
Ergenc
,
A. F.
, 2007, “
Delay Scheduling, an Unconventional Use of Time Delay for Trajectory Tracking
,”
Mechatronics
0957-4158,
17
, pp.
199
206
.
8.
Sipahi
,
R.
, and
Olgac
,
N.
, 2006, “
A Unique Methodology for the Stability Robustness of Multiple Time Delay Systems
,”
Syst. Control Lett.
0167-6911,
55
, pp.
819
825
.
9.
Sipahi
,
R.
, and
Olgac
,
N.
, 2006, “
Stability Robustness of Retarded LTI Systems With Single Delay and Exhaustive Determination of Their Imaginary Spectra
,”
SIAM J. Control Optim.
0363-0129,
45
, pp.
1680
1696
.
10.
Sipahi
,
R.
, and
Olgac
,
N.
, 2006, “
Complete Stability Analysis of Neutral-Type First Order Two-Time-Delay Systems With Cross-Talking Delays
,”
SIAM J. Control Optim.
0363-0129,
45
, pp.
957
971
.
11.
Yi
,
S.
,
Nelson
,
P. W.
, and
Ulsoy
,
A. G.
, 2007, “
Survey on Analysis of Time Delayed Systems via the Lambert W Function
,”
Dyn. Contin. Discrete Impulsive Syst.: Ser. A - Math. Anal.
,
14
(
S2
), pp.
296
301
.
12.
Yi
,
S.
,
Nelson
,
P. W.
, and
Ulsoy
,
A. G.
, 2008, “
Controllability and Observability of Systems of Linear Delay Differential Equations via the Matrix Lambert W Function
,”
IEEE Trans. Autom. Control
0018-9286,
53
, pp.
854
860
.
13.
Yi
,
S.
,
Nelson
,
P. W.
, and
Ulsoy
,
A. G.
, 2010, “
Eigenvalue Assignment via the Lambert W Function for Control of Time Delayed Systems
,”
J. Vib. Control
1077-5463, in press.
14.
Yi
,
S.
,
Nelson
,
P. W.
, and
Ulsoy
,
A. G.
, “
Robust Control and Time-Domain Specifications for Systems for Delay Differential Equations via Eigenvalue Assignment
,”
American Control Conference
, 2008.
15.
Smith
,
O. J. M.
, 1959, “
A Controller to Overcome Dead Time
,”
ISA
,
6
, pp.
28
33
.
16.
Artstein
,
Z.
, 1982, “
Linear Systems With Delayed Controls: A Reduction
,”
IEEE Trans. Autom. Control
0018-9286,
27
, pp.
869
879
.
17.
Evesque
,
S.
,
Annaswamy
,
A. M.
,
Niculescu
,
S.
, and
Dowling
,
A. P.
, 2003, “
Adaptive Control of a Class of Time-Delay Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
125
, pp.
186
193
.
18.
Fiagbedzi
,
Y. A.
, and
Pearson
,
A. E.
, 1986, “
Feedback Stabilization of Linear Autonomous Time Lag Systems
,”
IEEE Trans. Autom. Control
0018-9286,
31
, pp.
847
855
.
19.
Gu
,
K.
, and
Niculescu
,
S. -I.
, 2003, “
Survey on Recent Results in the Stability and Control of Time-Delay Systems
,”
Transactions of ASME
,
125
, pp.
158
165
.
20.
Jankovic
,
M.
, 2006, “
Forwarding, Backstepping, and Finite Spectrum Assignment for Time Delay Systems
,”
American Control Conference
.
21.
Jankovic
,
M.
, 2007, “
Control of Cascade Systems With Time Delay—The Integral Cross-Term Approach
,”
IEEE Conference on Decision and Control
.
22.
Jankovic
,
M.
, 2008, “
Recursive Predictor Design for Linear Systems With Time Delay
,”
American Control Conference
.
23.
Klamka
,
J.
, 1982, “
Observer for Linear Feedback Control of Systems With Distributed Delays in Controls and Outputs
,”
Syst. Control Lett.
0167-6911,
1
, pp.
326
331
.
24.
Krstic
,
M.
, 2008, “
Lyapunov Tools for Predictor Feedbacks for Delay Systems: Inverse Optimality and Robustness to Delay Mismatch
,”
Automatica
0005-1098,
44
, pp.
2930
2935
.
25.
Krstic
,
M.
, 2008, “
On Compensating Long Actuator Delays in Nonlinear Control
,”
IEEE Trans. Autom. Control
0018-9286,
53
, pp.
1684
1688
.
26.
Krstic
,
M.
, and
Smyshlyaev
,
A.
, 2008, “
Backstepping Boundary Control for First Order Hyperbolic PDEs and Application to Systems With Actuator and Sensor Delays
,”
Syst. Control Lett.
0167-6911,
57
, pp.
750
758
.
27.
Kwon
,
W. H.
, and
Pearson
,
A. E.
, 1980, “
Feedback Stabilization of Linear Systems With Delayed Control
,”
IEEE Trans. Autom. Control
0018-9286,
25
, pp.
266
269
.
28.
Manitius
,
A.
, and
Olbrot
,
A.
, 1979, “
Finite Spectrum Assignment Problem for Systems With Delays
,”
IEEE Trans. Autom. Control
0018-9286,
24
, pp.
541
552
.
29.
Michiels
,
W.
, and
Niculescu
,
S. -I.
, 2003, “
On the Delay Sensitivity of Smith Predictors
,”
Int. J. Syst. Sci.
0020-7721,
34
, pp.
543
551
.
30.
Michiels
,
W.
, and
Niculescu
,
S. -I.
, 2007,
Stability and Stabilization of Time-Delay Systems: An Eigenvalue-Based Approach
,
SIAM
,
Philadelphia
.
31.
Mirkin
,
L.
, 2004, “
On the Approximation of Distributed-Delay Control Laws
,”
Syst. Control Lett.
0167-6911,
51
, pp.
331
342
.
32.
Mondie
,
S.
, and
Michiels
,
W.
, 2003, “
Finite Spectrum Assignment of Unstable Time-Delay Systems With a Safe Implementation
,”
IEEE Trans. Autom. Control
0018-9286,
48
, pp.
2207
2212
.
33.
Niculescu
,
S. -I.
, and
Annaswamy
,
A. M.
, 2003, “
An Adaptive Smith-Controller for Time-Delay Systems With Relative Degree n∗≥2
,”
Syst. Control Lett.
0167-6911,
49
, pp.
347
358
.
34.
Olbrot
,
A. W.
, 1978, “
Stabilizability, Detectability, and Spectrum Assignment for Linear Autonomous Systems With General Time Delays
,”
IEEE Trans. Autom. Control
0018-9286,
23
, pp.
887
890
.
35.
Richard
,
J. -P.
, 2003, “
Time-Delay Systems: An Overview of Some Recent Advances and Open Problems
,”
Automatica
0005-1098,
39
, pp.
1667
1694
.
36.
Tadmor
,
G.
, 2000, “
The Standard H∞ Problem in Systems With a Single Input Delay
,”
IEEE Trans. Autom. Control
0018-9286,
45
, pp.
382
397
.
37.
Watanabe
,
K.
, 1986, “
Finite Spectrum Assignment and Observer for Multivariable Systems With Commensurate Delays
,”
IEEE Trans. Autom. Control
0018-9286,
31
, pp.
543
550
.
38.
Watanabe
,
K.
, and
Ito
,
M.
, 1981, “
An Observer for Linear Feedback Control Laws of Multivariable Systems With Multiple Delays in Controls and Outputs
,”
Syst. Control Lett.
0167-6911,
1
, pp.
54
59
.
39.
Zaccarian
,
L.
, and
Nesic
,
D.
, “
A Cascade Interpretation of the Smith Predictor and the Arising Enhanced Scheme
,”
American Control Conference
, 2006.
40.
Zhong
,
Q. -C.
, 2004, “
On Distributed Delay in Linear Control Laws—Part I: Discrete-Delay Implementation
,”
IEEE Trans. Autom. Control
0018-9286,
49
, pp.
2074
2080
.
41.
Zhong
,
Q. -C.
, 2006,
Robust Control of Time-Delay Systems
,
Springer
,
New York
.
42.
Zhong
,
Q. -C.
, and
Mirkin
,
L.
, 2002, “
Control of Integral Processes With Dead Time—Part 2: Quantitative Analysis
,”
IEE Proc.: Control Theory Appl.
1350-2379,
149
, pp.
291
296
.
43.
Datko
,
R.
,
Lagnese
,
J.
, and
Polis
,
M. P.
, 1986, “
An Example on the Effect of Time Delays in Boundary Feedback Stabilization of Wave Equations
,”
SIAM J. Control Optim.
0363-0129,
24
, pp.
152
156
.
44.
Datko
,
R.
, 1988, “
Not All Feedback Stabilized Hyperbolic Systems Are Robust With Respect to Small Time Delays in Their Feedbacks
,”
SIAM J. Control Optim.
0363-0129,
26
, pp.
697
713
.
45.
Guo
,
B. Z.
, and
Xu
,
C. Z.
, 2007, Boundary Stabilization of a One-Dimensional Wave Equation With Time Delay, Academy of Mathematics, Academia Sinica, preprint.
46.
Guo
,
B. -Z.
, and
Yang
,
K. -Y.
, 2009, “
Dynamic Stabilization of an Euler–Bernoulli Beam Equation With Boundary Observation Time Delay
,”
Automatica
0005-1098,
45
, pp.
1468
1475
.
47.
Chen
,
G.
, 1979, “
Energy Decay Estimates and Exact Boundary Value Controllability for the Wave Equation in a Bounded Domain
,”
J. Math. Pures Appl.
0021-7824,
58
, pp.
249
273
.
48.
Guo
,
B. Z.
, and
Xu
,
C. Z.
, 2007, “
The Stabilization of a One-Dimensional Wave Equation by Boundary Feedback With Non-Collocated Observation
,”
IEEE Trans. Autom. Control
0018-9286,
52
, pp.
371
377
.
49.
Krstic
,
M.
,
Guo
,
B. -J.
,
Balogh
,
A.
, and
Smyshlyaev
,
A.
, 2008, “
Output-Feedback Stabilization of an Unstable Wave Equation
,”
Automatica
0005-1098,
44
, pp.
63
74
.
50.
Luo
,
Z. -H.
,
Guo
,
B. -Z.
, and
Morgul
,
O.
, 1998,
Stability and Stabilization of Infinite Dimensional Systems With Applications
,
Springer
,
New York
.
51.
Dadfarnia
,
M.
,
Jalili
,
N.
,
Xian
,
B.
, and
Dawson
,
D. M.
, 2004, “
Lyapunov-Based Vibration Control of Translational Euler–Bernoulli Beams Using the Stabilizing Effect of Beam Damping Mechanisms
,”
J. Vib. Control
1077-5463,
10
, pp.
933
961
.
52.
de Queiroz
,
M. S.
,
Dawson
,
D. M.
,
Agarwal
,
M.
, and
Zhang
,
F.
, 1999, “
Adaptive Nonlinear Boundary Control of a Flexible Link Robot Arm
,”
IEEE Trans. Rob. Autom.
1042-296X,
15
(
4
), pp.
779
787
.
53.
de Queiroz
,
M. S.
, and
Rahn
,
C. D.
, 2002, “
Boundary Control of Vibration and Noise in Distributed Parameter Systems: An Overview
,”
Mech. Syst. Signal Process.
0888-3270,
16
, pp.
19
38
.
54.
Zhang
,
F.
,
Dawson
,
D. M.
,
de Queiroz
,
M. S.
, and
Vedagarbha
,
P.
, “
Boundary Control of the Timoshenko Beam With Free-End Mass/Inertia
,”
IEEE Conference on Decision and Control
, 1997.
55.
Krstic
,
M.
, 2009, “
Control of an Unstable Reaction-Diffusion PDE With Long Input Delay
,”
Syst. Control Lett.
0167-6911,
58
, pp.
773
782
.
56.
Krstic
,
M.
, and
Smyshlyaev
,
A.
, 2008,
Boundary Control of PDEs: A Course on Backstepping Designs
,
SIAM
,
Philadelphia
.
57.
Meurer
,
T.
, and
Kugi
,
A.
, 2009, “
Tracking Control for Boundary Controlled Parabolic PDEs With Varying Parameters: Combining Backstepping and Differential Flatness
,”
Automatica
0005-1098,
45
, pp.
1182
1194
.
58.
Smyshlyaev
,
A.
, and
Krstic
,
M.
, 2009, “
Boundary Control of an Unstable Wave Equation With Anti-Damping on the Uncontrolled Boundary
,”
Syst. Control Lett.
0167-6911,
58
, pp.
617
623
.
59.
Krstic
,
M.
, 2009, “
Compensating a String PDE in the Actuation or Sensing Path of an Unstable ODE
,”
IEEE Trans. Autom. Control
0018-9286,
54
, pp.
1362
1368
.
60.
Krstic
,
M.
, 2009, “
Adaptive Control of an Anti-Stable Wave PDE
,”
2009 American Control Conference
.
61.
Annaswamy
,
A.
, and
Ghoniem
,
A.
, 1995, “
Active Control in Combustion Systems
,”
IEEE Control Syst. Mag.
0272-1708,
15
, pp.
49
63
.
62.
Banaszuk
,
A.
,
Ariyur
,
K. B.
,
Krstic
,
M.
, and
Jacobson
,
C. A.
, 2004, “
An Adaptive Algorithm for Control of Combustion Instability
,”
Automatica
0005-1098,
14
, pp.
1965
1972
.
63.
Krstic
,
M.
, and
Banaszuk
,
A.
, 2006, “
Multivariable Adaptive Control of Instabilities Arising in Jet Engines
,”
Control Eng. Pract.
0967-0661,
14
, pp.
833
842
.
64.
Krstic
,
M.
,
Krupadanam
,
A. S.
, and
Jacobson
,
C. A.
, 1999, “
Self-Tuning Control of a Nonlinear Model of Combustion Instabilities
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
7
, pp.
424
436
.
65.
Aksikas
,
I.
,
Fuxman
,
A.
,
Forbes
,
J. F.
, and
Winkin
,
J. J.
, 2009, “
LQ Control Design of a Class of Hyperbolic PDE Systems: Application to Fixed-Bed Reactor
,”
Automatica
0005-1098,
45
, pp.
1542
1548
.
66.
Sano
,
H.
, 2003, “
Exponential Stability of a Mono-Tubular Heat Exchanger Equation With Output Feedback
,”
Syst. Control Lett.
0167-6911,
50
, pp.
363
369
.
67.
Bresch-Pietri
,
D.
, and
Krstic
,
M.
, 2009, “
Adaptive Trajectory Tracking Despite Unknown Input Delay and Plant Parameters
,”
Automatica
0005-1098,
45
, pp.
2074
2081
.
68.
Smyshlyaev
,
A.
, and
Krstic
,
M.
, 2004, “
Closed Form Boundary State Feedbacks for a Class of 1D Partial Integro-Differential Equations
,”
IEEE Trans. Autom. Control
0018-9286,
49
(
12
), pp.
2185
2202
.
69.
Smyshlyaev
,
A.
, and
Krstic
,
M.
, 2005, “
Backstepping Observers for a Class of Parabolic PDEs
,”
Syst. Control Lett.
0167-6911,
54
, pp.
613
625
.
You do not currently have access to this content.