This paper provides two computationally effective fusion estimation algorithms. The first algorithm is based on Cholesky factorization of a cross-covariance block matrix. This algorithm has low computational complexity and is equivalent to the standard composite fusion estimation algorithm as well. The second algorithm is based on a special approximation scheme for local cross-covariances. Such approximation is useful to compute matrix weights for fusion estimation in a multidimensional-multisensor environment. Subsequent computational analysis of the proposed fusion algorithms is presented with corresponding examples showing the low computational complexities of the new fusion estimation algorithms.

1.
Bar-Shalom
,
Y.
, and
Li
,
X. R.
, 1995,
Multi-Target Multi-Sensor Tracking: Principles and Techniques
,
YBS
,
Storrs, CT
.
2.
Liggins
,
M. E.
,
Chong
,
C. Y.
,
Kadar
,
I.
,
Alford
,
M. G.
,
Vannicola
,
V.
, and
Thomopoulos
,
S.
, 1997, “
Distributed Fusion Architecture and Algorithms for Target Tracking
,”
Proc. IEEE
0018-9219,
85
, pp.
95
107
.
3.
Zhu
,
Y. M.
, 2002,
Multisensor Decision and Estimation Fusion
,
Kluwer
,
Boston, MA
.
4.
Li
,
X. R.
,
Zhu
,
Y. M.
,
Wang
,
J.
, and
Han
,
C. Z.
, 2003, “
Optimal Linear Estimation Fusion—Part I: Unified Fusion Rules
,”
IEEE Trans. Inf. Theory
0018-9448,
49
(
9
), pp.
2192
2208
.
5.
Shin
,
V. I.
,
Lee
,
Y.
, and
Choi
,
T. S.
, 2006, “
Generalized Millman’s Formula and Its Applications for Estimation Problems
,”
Signal Process.
0165-1684,
86
(
2
), pp.
257
266
.
6.
Zhou
,
J.
,
Zhu
,
Y.
,
You
,
Z.
, and
Song
,
E.
, 2006, “
An Efficient Algorithm for Optimal Linear Estimation Fusion in Distributed Multisensor Systems
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
36
(
5
), pp.
1000
1009
.
7.
Bar-Shalom
,
Y.
, and
Campo
,
L.
, 1986, “
The Effect of the Common Process Noise on the Two-Sensor Fused-Track Covariance
,”
IEEE Trans. Aerosp. Electron. Syst.
0018-9251,
AES-22
(
6
), pp.
803
805
.
8.
Shin
,
V.
,
Shevlyakov
,
G.
, and
Kim
,
K.
, 2007, “
A New Fusion Formula and Its Application to Continuous-Time Linear Systems With Multisensor Environment
,”
Comput. Stat. Data Anal.
0167-9473,
52
(
2
), pp.
840
854
.
9.
Sun
,
S.
, and
Deng
,
Z.
, 2005, “
Multi-Sensor Information Fusion Kalman Filter Weighted by Scalars for Systems With Colored Measurement Noises
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
127
(
4
), pp.
663
667
.
10.
Borwein
,
J.
, and
Borwein
,
P.
, 1987,
Pi and Agm: A Study in Analytic Number Theory and Computational Complexity
,
Wiley
,
New York
.
11.
Lewis
,
F. L.
, 1986,
Optimal Estimation With an Introduction to Stochastic Control Theory
,
Wiley
,
New York
.
12.
Chui
,
C. K.
, and
Chen
,
G.
, 1987,
Kalman Filtering With Real-Time Applications
,
Springer-Verlag
,
Berlin
.
13.
Jazwinski
,
A. H.
, 1970,
Stochastic Processes and Filtering Theory
,
Academic
,
New York
.
You do not currently have access to this content.