The present study addresses the problem of estimating time-varying time constants associated with thermocouple sensors by a set of basis functions. By expanding each time-varying time constant onto a finite set of basis sequences, the time-varying identification problem reduces to a parameter estimation problem of a time-invariant system. The proposed algorithm, to be called as orthogonal least-squares with basis function expansion algorithm, combines the orthogonal least-squares algorithm with an error reduction ratio test to include significant basis functions into the model, which results in a parsimonious model structure. The performance of the method was compared with a linear Kalman filter. Simulations on engine data have demonstrated that the proposed method performs satisfactorily and is better than the Kalman filter. The new technique has been applied in a Stirling cycle compressor. The sinusoidal variations in time constant are tracked properly using the new technique, but the linear Kalman filter fails to do so. Both model validation and thermodynamic laws confirm that the new technique gives unbiased estimates and that the assumed thermocouple model is adequate.

1.
Lawton
,
B.
, and
Klingenberg
,
G.
, 1996,
Transient Temperature in Engineering and Science
,
Oxford University Press
,
Oxford
.
2.
Childs
,
P.
,
Greenwood
,
J.
, and
Long
,
C.
, 2000, “
Review of Temperature Measurement
,”
Rev. Sci. Instrum.
0034-6748,
71
(
8
), pp.
2959
2978
.
3.
Scadron
,
M.
, and
Warshawsky
,
I.
, 1952, “
Experimental Determination of Time Constants and Nusselt Numbers for Bare-Wire Thermocouples in High-Velocity Air Streams and Analytic Approximation of Conduction and Radiation
,” NACA, Washington, NACA Technical Note 2599.
4.
Kunugi
,
M.
, and
Jinno
,
H.
, 1958, “
Measurements of Fluctuating Flame Temperature
,”
Seventh Symposium (International) on Combustion
, London/Oxford, pp.
942
948
.
5.
Wormser
,
A.
, 1960, “
Experimental Determination of Thermocouple Time Constants With the Use of Variable Turbulence, Variable Density Wind Tunnel, and the Analytic Evaluation of Conduction, Radiation, and Other Secondary Effects
,”
National Aeronautical Meeting
, New York, pp.
1
5
.
6.
Heitor
,
M.
,
Taylor
,
A.
, and
Whitelaw
,
J.
, 1985, “
Simultaneous Velocity and Temperature Measurements in a Premixed Flame
,”
Exp. Fluids
0723-4864,
3
, pp.
323
339
.
7.
Miles
,
P.
, and
Gouldin
,
F.
, 1993, “
Determination of the Time Constant of Fine-Wire Thermocouples for Compensated Temperature Measurements in Premixed Turbulent Flames
,”
Combust. Sci. Technol.
0010-2202,
89
, pp.
181
199
.
8.
Shepard
,
C.
, and
Warshawsky
,
I.
, 1952, “
Electrical Techniques for Compensation of Thermal Time Lag of Thermocouples and Resistance Thermometer Elements
,” NACA, Washington, NACA Technical Note 2703.
9.
Yoshida
,
A.
,
Kubozuka
,
S.
, and
Nakamura
,
S.
, 1989, “
Compensation of Thermocouple Signals by Digital FIR Filter for Temperature Measurement in Turbulent Premixed Flames
,”
Combust. Sci. Technol.
0010-2202,
65
, pp.
317
331
.
10.
Pfriem
,
H.
, 1936, “
Zue messung verandelisher temperaturen von ogasen und flussigkeiten
,”
Forsch. Geb. Ingenieurwes.
0367-2204,
7
, pp.
85
92
.
11.
Tagawa
,
M.
, and
Ohta
,
Y.
, 1997, “
Two-Thermocouple Probe for Fluctuating Temperature Measurement in Combustion-Rational Estimation of Mean and Fluctuating Time Constants
,”
Combust. Flame
0010-2180,
109
, pp.
549
560
.
12.
Tagawa
,
M.
,
Shimoji
,
T.
, and
Ohta
,
Y.
, 1998, “
A Two-Thermocouple Probe Technique for Estimating Thermocouple Time Constants in Flows With Combustion: In Situ Parameter Identification of a First-Order Lag System
,”
Rev. Sci. Instrum.
0034-6748,
69
(
9
), pp.
3370
3378
.
13.
Tagawa
,
M.
,
Kato
,
K.
, and
Ohta
,
Y.
, 2003, “
Response Compensation of Temperature Sensors: Frequency-Domain Estimation of Thermal Time Constants
,”
Rev. Sci. Instrum.
0034-6748,
74
(
6
), pp.
3171
3174
.
14.
Forney
,
L.
, and
Fralick
,
G.
, 1994, “
Two Wire Thermocouple: Frequency Response in Constant Flow
,”
Rev. Sci. Instrum.
0034-6748,
65
(
10
), pp.
3252
3256
.
15.
Hung
,
P.
,
McLoone
,
S.
,
Irwin
,
G.
, and
Kee
,
R.
, 2003, “
A Total Least Squares Approach to Sensor Characterisation
,”
13th IFAC Symposium on System Identification, SYSID-2003
, Rotterdam, The Netherlands.
16.
Hung
,
P.
,
Irwin
,
G.
,
Kee
,
R.
, and
McLoone
,
S.
, 2005, “
Difference Equation Approach to Two-Thermocouple Sensor Characterization in Constant Velocity Flow Environments
,”
Rev. Sci. Instrum.
0034-6748,
76
, p.
024902
.
17.
Kee
,
R.
,
Hung
,
P.
,
Fleck
,
B.
,
Irwin
,
G.
,
Kenny
,
R.
,
Gaynor
,
J.
, and
McLoone
,
S.
, 2006, “
Fast Response Exhaust Gas Temperature Measurement in IC Engines
,” SAE Paper No. 2006-01-1319.
18.
Hung
,
P. C.
,
Kee
,
R. J.
,
Irwin
,
G. W.
, and
McLoone
,
S. F.
, 2007, “
Blind Deconvolution for Two-Thermocouple Sensor Characterization
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
129
, pp.
194
202
.
19.
Kar
,
K.
,
Roberts
,
S.
,
Stone
,
R.
,
Oldfield
,
M.
, and
French
,
B.
, 2004, “
Instantaneous Exhaust Temperature Measurement Using Thermocouple Compensation Techniques
,”
SAE Trans.
0096-736X,
113
(
4
), pp.
652
673
.
20.
O’Reilly
,
P.
,
Kee
,
R. J.
,
Fleck
,
R.
, and
McEntee
,
P. T.
, 2001, “
Two-Wire Thermocouples: A Nonlinear State Estimation Approach to Temperature Reconstruction
,”
Rev. Sci. Instrum.
0034-6748,
72
(
8
), pp.
3449
3457
.
21.
Grys
,
S.
, and
Minkina
,
W.
, 2002, “
Fast Temperature Determination Using Two Thermometers With Different Dynamical Properties
,”
Sens. Actuators, A
0924-4247,
100
, pp.
192
198
.
22.
Hoshino
,
T.
,
Watanasirisuk
,
P.
,
Ibrahim
,
M.
, and
Simon
,
T.
, 2004, “
Dynamic Temperature Measurements in Stirling Cycle Machines Using Two-Thermocouple Technique
,”
Second International Energy Conversion Engineering Conference
, Providence, RI.
23.
Hung
,
C.
,
McLoone
,
S.
,
Irwin
,
G.
, and
Kee
,
R.
, 2005, “
Unbiased Thermocouple Sensor Characterisation in Variable Flow Environments
,”
Proceedings 16th IFAC World Congress
, Prague, Czech Republic.
24.
McLoone
,
S.
,
Hung
,
P.
,
Irwin
,
G.
, and
Kee
,
R.
, 2006, “
Exploiting A Priori Time Constant Ratio Information in Difference Equation Two-Thermocouple Sensor Characterization
,”
IEEE Sens. J.
1530-437X,
6
(
6
), pp.
1627
1637
.
25.
Kar
,
K.
,
Swain
,
A.
,
Raine
,
R.
,
Roberts
,
S.
, and
Stone
,
R.
, 2006, “
Cycle-by-cycle variations in exhaust temperatures using thermocouple compensation techniques
,” SAE Paper No. 2006-010-1197.
26.
Zou
,
R.
,
Hengliang
,
W.
, and
Chon
,
K. H.
, 2003, “
A Robust Time-Varying Identification Algorithm Using Basis Functions
,”
Ann. Biomed. Eng.
0090-6964,
31
, pp.
840
853
.
27.
Swain
,
A. K.
, and
Billings
,
S. A.
, 1998, “
Weighted Complex Orthogonal Estimator for Identifying Linear and Nonlinear Continuous Time Models From Generalized Frequency Response Functions
,”
Mech. Syst. Signal Process.
,
12
(
2
), pp.
269
292
. 0888-3270
28.
Billings
,
S.
,
Chen
,
S.
, and
Korenberg
,
M. J.
, 1989, “
Identification of MIMO Nonlinear Systems Using a Forward Regressor Orthogonal Estimator
,”
Int. J. Control
,
49
(
6
), pp.
2157
2189
. 0020-7179
29.
Chen
,
S.
,
Billings
,
S. A.
, and
Luo
,
W.
, 1989, “
Orthogonal Least Squares Methods and Their Application to Nonlinear System Identification
,”
Int. J. Control
0020-7179,
50
(
5
), pp.
1873
1896
.
30.
Tsatsanis
,
M.
, and
Giannakis
,
G.
, 1993, “
Time-Varying System Identification and Model Validation Using Wavelets
,”
IEEE Trans. Signal Process.
1053-587X,
41
, pp.
3512
3523
.
31.
Penny
,
W.
, and
Roberts
,
S.
, 1998, “
Dynamic Linear Models, Recursive Least Squares and Steepest-Descent Learning
,” Department of Electrical and Electronic Engineering, Imperial College of Science and Technology and Medicine, Technical Report.
32.
Kar
,
K.
,
Dadd
,
M.
,
Bailey
,
P.
, and
Stone
,
R.
, 2007, “
Fast Response Temperature Measurements in Stirling Cycle Cryocooler Components
,”
Cryogenic Engineering Conference, C4-D-06
, Chattanooga, TN.
33.
Billings
,
S.
, and
Voon
,
W.
, 1986, “
Correlation Based Model Validity Tests for Non-Linear Models
,”
Int. J. Control
,
44
(
1
), pp.
235
244
. 0020-7179
You do not currently have access to this content.