An existing automatic loop shaping algorithm for designing SISO controllers is extended to automatic loop shaping of MIMO controllers that is based on the sequential QFT method. The algorithm is efficient and fast and can search for controllers satisfying many types of restrictions, including constraints on each one of the controller’s elements such as hard restrictions on the high-frequency amplitude or damping factor of notch filters. Moreover, the algorithm can be applied to unstructured uncertain plants, be they stable, unstable, or nonminimum phase, including pure delay.

1.
Ballance
,
D. J.
, and
Gawthrop
,
P. J.
, 1991, “
Control System Design Via a Quantitative Feedback Approach
,”
Proc. of the IEE Conference Control-91
, Heriot-Watt University Edinburgh, UK, Vol.
1
, pp.
476
480
.
2.
Besson
,
V.
, and
Shenton
,
A. T.
, 2000, “
Interactive Parameter Space Design for Robust Performance of MISO Control Systems
,”
IEEE Trans. Autom. Control
0018-9286,
45
, pp.
1917
1924
.
3.
Chait
,
Y.
,
Chen
,
Q.
, and
Hollot
,
C. V.
, 1999, “
Automatic Loop-Shaping of QFT Controllers Via Linear Programing
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
121
, pp.
351
357
.
4.
Fransson
,
C. M.
,
Lennartson
,
B.
,
Wik
,
T.
,
Holnstrom
,
K.
,
Saunders
,
M.
, and
Gutman
,
P. O.
, 2002, “
Global Controller Optimization Using Horowitz Bounds
,”
IFAC World Congress
, Barcelona, Spain.
5.
Garcia-Sanz
,
M.
, and
Guillen
,
J. C.
, 2000, “
Automatic Loop Shaping of QFT Controllers Via Genetic Algorithm, Robust Control Design 2000 (ROCOND 2000)
Proceedings of the 3rd IFAC Symposium
,
Elsevier
,
Amsterdam Kidlington, UK
, Vol.
2
, pp.
603
608
.
6.
Thompson
,
D. F.
, 1998, “
Gain-Bandwidth Optimal Design for the New Formulation Quantitative Feedback Theory
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
120
, pp.
401
404
.
7.
Zolotas
,
A. C.
, and
Halikias
,
G. D.
, 1999, “
Optimal Design of PID Controllers Using the QFT Method
,”
IEE Proc.-Control Theory Appl.
, Vol.
146
(
6
), pp.
585
589
.
8.
Horowitz
,
I.
, 1982, “
Improved Design Technique for Uncertain Multiple-Input Multiple-Output Feedback Systems
,”
Int. J. Control
0020-7179,
36
, pp.
977
988
.
9.
Yaniv
,
O.
, and
Horowitz
,
I.
, 1986, “
A Quantitative Design Method for MIMO Linear Feedback Systems Having Uncertain Plants
,”
Int. J. Control
0020-7179,
43
, pp.
401
421
.
10.
Park
,
M. S.
,
Chait
,
Y.
, and
Steinbuch
,
M.
, 1997, “
Inversion-Free Design Algorithms for Multivariable Quantitative Feedback Theory: An Application to Robust Control of a CD-ROM
,”
Automatica
0005-1098,
33
, pp.
915
926
.
11.
Park
,
M. S.
,
Lee
,
H. S.
,
Kim
,
I. Y.
, and
Chait
,
Y.
, 2000, “
Application of Multivariable Control Design to Dual-Mode Digital Versatile Drive
,”
Asian J. Control
,
2
, pp.
204
211
.
12.
Houpis
,
C. H.
, and
Sating
,
R. R.
, 1998, “
MIMO QFT CAD Package (Version 3)
,”
Int. J. Robust Nonlinear Control
1049-8923,
7
, pp.
533
549
.
13.
Yaniv
,
O.
, and
Nagurka
,
M.
, 2005, “
Automatic Loop Shaping of Structured Controllers Satisfying QFT Performance
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
127
(
3
), pp.
472
477
.
14.
Yaniv
,
O.
, 1999,
Quantitative Feedback Design of Linear and Nonlinear Control Systems
,
Kluwer Academic
,
New York
.
15.
Horowitz
,
I.
, 1963,
Synthesis of Feedback Systems
,
Academic
,
New York
.
16.
Skogestad
,
S.
, and
Postlethwaite
,
I.
, 1996,
Multivariable Feedback Control
,
Wiley
,
New York
.
17.
Yaniv
,
O.
, and
Nagurka
,
M.
, 2003, “
Robust PI Controller Design Satisfying Sensitivity and Uncertainty Specifications
,”
IEEE Trans. Autom. Control
0018-9286,
48
, pp.
2069
2072
.
18.
Yaniv
,
O.
, and
Nagurka
,
M.
, 2004, “
Design of PID Controllers Satisfying Gain Margin and Sensitivity Constraints on a Set of Plants
,”
Automatica
0005-1098,
40
, pp.
111
116
.
19.
Skogestad
,
S.
,
Morari
,
M.
, and
Doyle
,
J. C.
, 1988, “
Robust Control of Ill Conditioned Plants: High Purity Distillation
,”
IEEE Trans. Autom. Control
0018-9286,
33
, pp.
1092
1105
.
20.
Limebeer
,
D. J. N.
, 1991, “
The Specification and Purpose of a Control Design Case Study
,”
Proceedings of CDC
, Brighton, pp.
1579
1580
.
21.
Horowitz
,
I.
, 1993,
Quantitative Feedback Design Theory (QFT)
,
QFT
,
Boulder, CO
.
22.
Limebeer
,
D. J. M.
,
Kasendally
,
E. M.
, and
Perkins
,
J. D.
, 1993, “
On the Design of Robust Two Degree of Freedom Controllers
,”
Automatica
0005-1098,
29
, pp.
157
168
.
23.
Lundstrom
,
P.
,
Skogestad
,
S.
, and
Doyle
,
J. C.
, 1999, “
Two Degree of Freedom Controller Design for an Ill Conditioned Distillation Process Using μ Synthesis
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
7
, pp.
12
22
.
24.
Boje
,
E.
, 2002, “
Multivariable Quantitative Feedback Design for Tracking Error Specifications
,”
Automatica
0005-1098,
38
, pp.
131
138
.
25.
Eitelberg
,
E.
, 2003, “
On Multivariable Tracking
,”
6th International Symposium On Quantitative Feedback Theory (in conjunction with the first African Control Conference)
, University of Cape Town, SA, December, Vol.
2
, pp.
514
519
.
26.
Yaniv
,
O.
, 1992, “
Synthesis of Uncertain MIMO Feedback Systems for Gain and Phase Margin at Different Channel Breaking Points
,”
Automatica
0005-1098,
28
, pp.
1017
1020
.
27.
Gantmacher
,
F. R.
, 1960,
The Theory of Matrices
,
Chelsea
,
New York
.
28.
Horowitz
,
I.
, 1993,
Quantitative Feedback Design Theory (QFT)
,
QFT
,
Boulder, CO
.
You do not currently have access to this content.