An existing automatic loop shaping algorithm for designing SISO controllers is extended to automatic loop shaping of MIMO controllers that is based on the sequential QFT method. The algorithm is efficient and fast and can search for controllers satisfying many types of restrictions, including constraints on each one of the controller’s elements such as hard restrictions on the high-frequency amplitude or damping factor of notch filters. Moreover, the algorithm can be applied to unstructured uncertain plants, be they stable, unstable, or nonminimum phase, including pure delay.
Issue Section:
Design Innovation
1.
Ballance
, D. J.
, and Gawthrop
, P. J.
, 1991, “Control System Design Via a Quantitative Feedback Approach
,” Proc. of the IEE Conference Control-91
, Heriot-Watt University Edinburgh, UK, Vol. 1
, pp. 476
–480
.2.
Besson
, V.
, and Shenton
, A. T.
, 2000, “Interactive Parameter Space Design for Robust Performance of MISO Control Systems
,” IEEE Trans. Autom. Control
0018-9286, 45
, pp. 1917
–1924
.3.
Chait
, Y.
, Chen
, Q.
, and Hollot
, C. V.
, 1999, “Automatic Loop-Shaping of QFT Controllers Via Linear Programing
,” ASME J. Dyn. Syst., Meas., Control
0022-0434, 121
, pp. 351
–357
.4.
Fransson
, C. M.
, Lennartson
, B.
, Wik
, T.
, Holnstrom
, K.
, Saunders
, M.
, and Gutman
, P. O.
, 2002, “Global Controller Optimization Using Horowitz Bounds
,” IFAC World Congress
, Barcelona, Spain.5.
Garcia-Sanz
, M.
, and Guillen
, J. C.
, 2000, “Automatic Loop Shaping of QFT Controllers Via Genetic Algorithm, Robust Control Design 2000 (ROCOND 2000)
” Proceedings of the 3rd IFAC Symposium
, Elsevier
, Amsterdam Kidlington, UK
, Vol. 2
, pp. 603
–608
.6.
Thompson
, D. F.
, 1998, “Gain-Bandwidth Optimal Design for the New Formulation Quantitative Feedback Theory
,” ASME J. Dyn. Syst., Meas., Control
0022-0434, 120
, pp. 401
–404
.7.
Zolotas
, A. C.
, and Halikias
, G. D.
, 1999, “Optimal Design of PID Controllers Using the QFT Method
,” IEE Proc.-Control Theory Appl.
, Vol. 146
(6
), pp. 585
–589
.8.
Horowitz
, I.
, 1982, “Improved Design Technique for Uncertain Multiple-Input Multiple-Output Feedback Systems
,” Int. J. Control
0020-7179, 36
, pp. 977
–988
.9.
Yaniv
, O.
, and Horowitz
, I.
, 1986, “A Quantitative Design Method for MIMO Linear Feedback Systems Having Uncertain Plants
,” Int. J. Control
0020-7179, 43
, pp. 401
–421
.10.
Park
, M. S.
, Chait
, Y.
, and Steinbuch
, M.
, 1997, “Inversion-Free Design Algorithms for Multivariable Quantitative Feedback Theory: An Application to Robust Control of a CD-ROM
,” Automatica
0005-1098, 33
, pp. 915
–926
.11.
Park
, M. S.
, Lee
, H. S.
, Kim
, I. Y.
, and Chait
, Y.
, 2000, “Application of Multivariable Control Design to Dual-Mode Digital Versatile Drive
,” Asian J. Control
, 2
, pp. 204
–211
.12.
Houpis
, C. H.
, and Sating
, R. R.
, 1998, “MIMO QFT CAD Package (Version 3)
,” Int. J. Robust Nonlinear Control
1049-8923, 7
, pp. 533
–549
.13.
Yaniv
, O.
, and Nagurka
, M.
, 2005, “Automatic Loop Shaping of Structured Controllers Satisfying QFT Performance
,” ASME J. Dyn. Syst., Meas., Control
0022-0434, 127
(3
), pp. 472
–477
.14.
Yaniv
, O.
, 1999, Quantitative Feedback Design of Linear and Nonlinear Control Systems
, Kluwer Academic
, New York
.15.
Horowitz
, I.
, 1963, Synthesis of Feedback Systems
, Academic
, New York
.16.
Skogestad
, S.
, and Postlethwaite
, I.
, 1996, Multivariable Feedback Control
, Wiley
, New York
.17.
Yaniv
, O.
, and Nagurka
, M.
, 2003, “Robust PI Controller Design Satisfying Sensitivity and Uncertainty Specifications
,” IEEE Trans. Autom. Control
0018-9286, 48
, pp. 2069
–2072
.18.
Yaniv
, O.
, and Nagurka
, M.
, 2004, “Design of PID Controllers Satisfying Gain Margin and Sensitivity Constraints on a Set of Plants
,” Automatica
0005-1098, 40
, pp. 111
–116
.19.
Skogestad
, S.
, Morari
, M.
, and Doyle
, J. C.
, 1988, “Robust Control of Ill Conditioned Plants: High Purity Distillation
,” IEEE Trans. Autom. Control
0018-9286, 33
, pp. 1092
–1105
.20.
Limebeer
, D. J. N.
, 1991, “The Specification and Purpose of a Control Design Case Study
,” Proceedings of CDC
, Brighton, pp. 1579
–1580
.21.
Horowitz
, I.
, 1993, Quantitative Feedback Design Theory (QFT)
, QFT
, Boulder, CO
.22.
Limebeer
, D. J. M.
, Kasendally
, E. M.
, and Perkins
, J. D.
, 1993, “On the Design of Robust Two Degree of Freedom Controllers
,” Automatica
0005-1098, 29
, pp. 157
–168
.23.
Lundstrom
, P.
, Skogestad
, S.
, and Doyle
, J. C.
, 1999, “Two Degree of Freedom Controller Design for an Ill Conditioned Distillation Process Using μ Synthesis
,” IEEE Trans. Control Syst. Technol.
1063-6536, 7
, pp. 12
–22
.24.
Boje
, E.
, 2002, “Multivariable Quantitative Feedback Design for Tracking Error Specifications
,” Automatica
0005-1098, 38
, pp. 131
–138
.25.
Eitelberg
, E.
, 2003, “On Multivariable Tracking
,” 6th International Symposium On Quantitative Feedback Theory (in conjunction with the first African Control Conference)
, University of Cape Town, SA, December, Vol. 2
, pp. 514
–519
.26.
Yaniv
, O.
, 1992, “Synthesis of Uncertain MIMO Feedback Systems for Gain and Phase Margin at Different Channel Breaking Points
,” Automatica
0005-1098, 28
, pp. 1017
–1020
.27.
Gantmacher
, F. R.
, 1960, The Theory of Matrices
, Chelsea
, New York
.28.
Horowitz
, I.
, 1993, Quantitative Feedback Design Theory (QFT)
, QFT
, Boulder, CO
.Copyright © 2006
by American Society of Mechanical Engineers
You do not currently have access to this content.