This paper presents performance limitations and a control design methodology for nonminimum phase plants of the pure delay type subject to robustness constraints. Of interest is the design of a set of controllers, for which the open-loop transfer function is a proportional-integral (PI) controller plus delay, meeting constraints on the magnitude of the closed-loop transfer function and on the plant gain uncertainty. These two specifications are used to characterize the robustness, and are a recommended alternative to the gain and phase margin constraints. A control design plot is presented which allows for selection of controller parameters including those for the lowest sensitivity controller, and graphically highlights gain and phase margin tradeoffs. The paper discusses limitations of performance of such systems in terms of crossover frequency and sensitivity. In addition, expressions and design plots are provided for a simplified approximate solution.

1.
Ziegler
,
J.
, and
Nichols
,
N. B.
,
1942
, “
Optimum Settings for Automatic Controllers
,”
Trans. ASME
,
64
, pp.
759
765
.
2.
Cohen
,
G.
, and
Coon
,
G. A.
,
1953
, “
Theoretical Consideration of Retarded Control
,”
Trans. ASME
,
75
, pp.
827
834
.
3.
Hang
,
C.
,
Tan
,
C. H.
, and
Chan
,
W. P.
,
1980
, “
A Performance Study of Control Systems With Dead Time
,”
IEEE Trans. Ind. Electron. Control Instrum.
,
27
(
3
), pp.
234
241
.
4.
Chwee
,
T.
, and
Sirisena
,
H. R.
,
1988
, “
Self-Tuning PID Controllers for Dead Time Processes
,”
IEEE Trans. Ind. Electron.
,
35
(
1
), pp.
119
125
.
5.
Hang, C., Lee, T. H., and Ho, W. K., 1993, Adaptive Control, ISA, Research Triangle Park, NC.
6.
Astrom, K., and Wittenmark, B., 1995, Adaptive Control, 2nd ed., Addison-Wesley, Reading, MA.
7.
Shafiei
,
Z.
, and
Shenton
,
A. T.
,
1994
, “
Tuning of PID-Type Controllers for Stable and Unstable Systems With Time Delay
,”
Automatica
,
30
(
10
), pp.
1609
1615
.
8.
Tsang
,
K.
,
Rad
,
A. B.
, and
Lo
,
W. L.
,
1994
, “
PID Controllers for Dominant Time Delay Systems
,”
Control Comput.
,
22
(
3
), pp.
65
69
.
9.
Lee
,
Y.
,
Lee
,
M.
,
Park
,
S.
, and
Brosilow
,
C.
,
1998
, “
PID Controller Tuning for Desired Closed-Loop Responses for SISO Systems
,”
AIChE J.
,
44
(
1
), pp.
106
115
.
10.
Khan
,
B.
, and
Lehman
,
B.
,
1996
, “
Setpoint PI Controllers for Systems With Large Normalized Dead Time
,”
IEEE Trans. Control Syst. Technol.
,
4
(
4
), pp.
459
466
.
11.
Alexander
,
C.
, and
Trahan
,
R. E.
,
2001
, “
A Comparison of Traditional and Adaptive Control Strategies for Systems With Time Delay
,”
ISA Trans.
,
40
, pp.
353
368
.
12.
Abbas
,
A.
,
1997
, “
A New Set of Controller Tuning Relations
,”
ISA Trans.
,
36
(
3
), pp.
183
187
.
13.
Lee
,
Y.
,
Lee
,
J.
, and
Park
,
S.
,
2000
, “
PID Controller Tuning for Integrating and Unstable Processes With Time Delay
,”
Chem. Eng. Sci.
,
55
, pp.
3481
3493
.
14.
Mann
,
G.
,
Hu
,
B. G.
, and
Gosine
,
R. G.
,
2001
, “
Time-Domain Based Design and Analysis of New PID Tuning Rules
,”
IEE Proc.: Control Theory Appl.
,
148
(
3
), pp.
251
262
.
15.
Ho
,
W. K.
,
Hang
,
C. C.
, and
Cao
,
L. S.
,
1995
, “
Tuning of PID Controllers Based on Gain and Phase Margin Specifications
,”
Automatica
,
31
(
3
), pp.
497
502
.
16.
Ho
,
W. K.
,
Lim
,
K. W.
, and
Xu
,
W.
,
1998
, “
Optimal Gain and Phase Margin Tuning for PID Controllers
,”
Automatica
,
34
(
8
), pp.
1009
1014
.
17.
Astrom
,
K. J.
,
Panagopoulos
,
H.
, and
Hagglund
,
T.
,
1998
, “
Design of PI Controllers Based on Non-Convex Optimization
,”
Automatica
,
34
(
5
), pp.
585
601
.
18.
Horowitz
,
I.
, and
Sidi
,
M.
,
1972
, “
Synthesis of Feedback Systems With Large Plant Ignorance for Prescribed Time-Domain Tolerances
,”
Int. J. Control
,
16
(
2
), pp.
287
309
.
19.
Sidi
,
M.
,
1976
, “
Feedback Synthesis With Plant Ignorance, Non-Minimum Phase, and Time-Domain Tolerances
,”
Automatica
,
12
, pp.
265
271
.
20.
Horowitz
,
I.
, and
Sidi
,
M.
,
1978
, “
Optimum Synthesis of Non-Minimum Phase Feedback Systems With Plant Uncertainty
,”
Int. J. Control
,
27
(
3
), pp.
361
386
.
21.
Sidi
,
M.
,
1984
, “
On Maximization of Gain-Bandwidth in Sampled Systems
,”
Int. J. Control
,
32
, pp.
1099
1109
.
22.
Horowitz
,
I.
, and
Liau
,
Y.
,
1984
, “
Limitations of Non-Minimum Phase Feedback Systems
,”
Int. J. Control
,
122
(
3
), pp.
889
919
.
23.
Francis
,
B. A.
, and
Zames
,
G.
,
1984
, “
On H-Infinity Optimal Sensitivity Theory for SISO Feedback Systems
,”
IEEE Trans. Autom. Control
,
29
, pp.
9
16
.
24.
Freudenberg
,
J.
, and
Looze
,
D. P.
,
1985
, “
Right Half Plane Poles and Zeros and Design Tradeoffs in Feedback Systems
,”
IEEE Trans. Autom. Control
,
30
(
6
), pp.
555
565
.
25.
Freudenberg
,
J.
, and
Looze
,
D. P.
,
1987
, “
A Sensitivity Tradeoff for Plants With Time Delay
,”
IEEE Trans. Autom. Control
,
32
(
2
), pp.
99
104
.
26.
Middleton
,
R. H.
,
1991
, “
Trade-Offs in Linear Control System Design
,”
Automatica
,
27
, pp.
281
292
.
27.
Astrom, K., 1996, Fundamental Limitations of Control System Performance, Kluwer Academic, Dordrecht (Mathematical Engineering: A Kailath Festschrift).
28.
Seron, M., Braslavsky, J., and Goodwin, G. C., 1997, Fundamental Limitations in Filtering and Control, Springer-Verlag, New York.
29.
Bode, H., 1945, Network Analysis and Feedback Amplifier Design, Van Nostrand, New York.
30.
Horowitz, I., 1963, Synthesis of Feedback Systems, Academic Press, New York.
31.
Yaniv, O., 1999, Quantitative Feedback Design of Linear and Nonlinear Control Systems, Kluwer Academic, Dordrecht.
32.
Seron, M., and Goodwin, G., 1995, “Design Limitations in Linear Filtering,” Proceedings of the 34th CDC, New Orleans, LA, December.
You do not currently have access to this content.