This paper discusses the optimal solution of Mayer’s problem for globally feedback linearizable time-invariant systems subject to general nonlinear path and actuator constraints. This class of problems includes the minimum time problem, important for engineering applications. Globally feedback linearizable nonlinear systems are diffeomorphic to linear systems that consist of blocks of integrators. Using this alternate form, it is proved that the optimal solution always lies on a constraint arc. As a result of this optimal structure of the solution, efficient numerical procedures can be developed. For a single input system, this result allows to characterize and build the optimal solution. The associated multi-point boundary value problem is then solved using direct solution techniques. [S0022-0434(00)02002-5]

1.
Shin
,
K. G.
, and
McKay
,
N. D.
,
1985
, “
Minimum-Time Control of Robotic Manipulators with Geometric Path Constraints
,”
IEEE Trans. Autom. Control.
,
AC-30
, No.
6
, pp.
531
541
.
2.
Bobrow
,
J. E.
,
Dubowsky
,
S.
, and
Gibson
,
J. S.
,
1985
, “
Time-Optimal Control of Robotic Manipulators Along Specified Paths
,”
Int. J. Robot. Res.
,
4
, No.
3
, pp.
3
17
.
3.
Slotine
,
J.-J. E.
, and
Yang
,
H. S.
,
1989
, “
Improving the Efficiency of Time-Optimal Path-Following Algorithms
,”
IEEE Trans. Autom. Control.
,
5
, No.
1
, pp.
118
124
.
4.
Schlemmer
,
M.
, and
Gruebel
,
G.
,
1998
, “
Real-Time Collision-Free Trajectory Optimization of Robot Manipulators via Semi-Infinite Parameter Optimization
,”
Int. J. Robot. Res.
,
17
, No.
9
, Sept. pp.
1013
1029
.
5.
Sontag, E. D., and Sussmann, H. J., 1986, “Time-Optimal Control of Manipulators,” Proc. IEEE Conf. Robot. Autom., Apr. 1692–1697.
6.
Shen, H., and Tsiotras, P., 1998, “Time-Optimal Control of Axi-symmetric Spacecraft,” AIAA Guid. Navig. Control Conf., AIAA Paper 98–4328, Boston.
7.
Isidori, A., 1994, Nonlinear Control Systems, Springer.
8.
Bryson, A. E., and Ho, Y.-C., 1969, Applied Optimal Control, Blaisdell Publishing Company.
9.
Spong, M. W., Vidyasagar M., 1986, Robot Dynamics and Control, Wiley.
You do not currently have access to this content.