Abstract

Automated manufacturing feature recognition is a crucial link between computer-aided design and manufacturing, facilitating process selection and other downstream tasks in computer-aided process planning. While various methods such as graph-based, rule-based, and neural networks have been proposed for automatic feature recognition, they suffer from poor scalability or computational inefficiency. Recently, voxel-based convolutional neural networks have shown promise in solving these challenges but incur a tradeoff between computational cost and feature resolution. This paper investigates a computationally efficient sparse voxel-based convolutional neural network for manufacturing feature recognition, specifically, an octree-based sparse voxel convolutional neural network. This model is trained on a large-scale manufacturing feature dataset, and its performance is compared to a voxel-based feature recognition model (FeatureNet). The results indicate that the octree-based model yields higher feature recognition accuracy (99.5% on the test dataset) with 44% lower GPU memory consumption than a voxel-based model of comparable resolution. In addition, increasing the resolution of the octree-based model enables recognition of finer manufacturing features. These results indicate that a sparse voxel-based convolutional neural network is a computationally efficient deep learning model for manufacturing feature recognition to enable process planning automation. Moreover, the sparse voxel-based neural network demonstrated comparable performance to a boundary representation-based feature recognition neural network, achieving similar accuracy in single feature recognition without having access to the exact 3D shape descriptors

This content is only available via PDF.
You do not currently have access to this content.