In this paper, we propose a new triangular finite element mesh generation scheme from various kinds of triangular meshes using the multiresolution technique. The proposed scheme consists of two methods: a mesh quality improvement method and a mesh property control method. The basic strategy of these methods is a combination of the mesh subdivision and simplification. Given mesh is first subdivided to obtain enough degree of freedom for a property change, then by simplification using edge collapse for the resulting mesh to change the mesh properties, we can easily improve and control the mesh properties required for finite element analysis.

1.
Owen
,
S. J.
, 1998, “
A Survey of Unstructured Mesh Generation Technology
,”
Proc. 7th International Meshing Roundtable
,
Dearborn
, Michigan, pp.
239
267
.
2.
Topping
,
R. H. V.
,
Muylle
,
J.
,
Iványi
,
P.
,
Putanowiez
,
R.
, and
Cheng
,
B.
, 2004,
Finite Element Mesh Generation
,
Saxe-Couburg Publications
, Kippen, Chap. 3.
3.
Shimada
,
K.
, and
Gossard
,
D. C.
, 1995, “
Bubble Mesh: Automated Triangular Meshing of Non-Manifold Geometry by Sphere Packing
,”
Proc. ACM Symposium on Solid Modeling and Applications
,
ACM
, pp.
409
419
.
4.
Bechet
,
E.
,
Cuilliere
,
J. C.
, and
Trochu
,
F.
, 2002, “
Generation of a Finite Element MESH from Stereolithography (STL) Files
,”
Comput.-Aided Des.
0010-4485,
34
, pp.
1
17
.
5.
Bianconi
,
F.
, 2002, “
Bridging the Gap between CAD and CAE using STL Files
,”
International Journal of CAD/CAM
,
2
(
1
), pp.
55
67
.
6.
Floater
,
M. S.
, 1997, “
Parameterization and Smooth Approximation of Surface Triangulations
,”
Comput. Aided Geom. Des.
0167-8396,
14
(
3
), pp.
231
250
.
7.
Sheffer
,
A.
, and
Sturler
,
E.
, 2001, “
Parameterization of Faceted Surfaces for Meshing using Angle-based Flattening
,”
Eng. Comput.
0177-0667,
17
(
3
), pp.
326
337
.
8.
Alliez
,
P.
,
Meyer
,
M.
, and
Desbrun
,
M.
, 2002, “
Interactive Geometry Remeshing
,”
Proc. SIGGRAPH’02
,
ACM Press
, New York, pp.
347
354
.
9.
Stollnitz
,
E. J.
,
DeRose
,
T. D.
, and
Salesin
,
D. H.
, 1996,
Wavelets for Computer Graphics: Theory and Application
,
Morgan Kaufmann
, San Francisco, Chap. 10.
10.
Sifri
,
O.
,
Sheffer
,
A.
, and
Gotsman
,
C.
, 2003, “
Geodesic-based Surface Remeshing
,”
Proceedings of the 12th International Meshing Roundtable
, Santa Fe, New Mexico, pp.
189
199
.
11.
Garland
,
M.
, and
Heckbert
,
P. S.
, 1997, “
Surface Simplification Using Quadric Error Metrics
,”
Proceedings of the SIGGRAPH’97
,
ACM Press
, New York, pp.
209
216
.
12.
Hoppe
,
H.
, 1996, “
Progressive Meshes
,”
Proceedings of the SIGGRAPH’96
,
ACM Press
, New York, pp.
98
108
.
13.
Luebke
,
D.
,
Reddy
,
M.
,
Cohen
,
J. D.
,
Varshney
,
A.
,
Watson
,
B.
, and
Huebner
,
R.
, 2003,
Level of Detail for 3D Graphics
,
Morgan Kaufmann
, San Francisco.
14.
Taubin
,
G.
,
Guéziec
,
A.
,
Hom
,
W.
, and
Lazarus
,
F.
, 1998, “
Progressive Forest Split Compression
,”
Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques
,
ACM Press
, New York, pp.
123
132
.
15.
Karabassi
,
E. A.
,
Papaioannou
,
G.
,
Fretzagia
,
C.
and
Theoharis
,
T.
, 2003, “
Exploiting Multiresolution Models to Accelerate Ray Tracing
,”
Comput. Graphics
0097-8493,
27
, pp.
91
98
.
16.
Floriani
,
L. D.
,
Magillo
,
P.
,
Morando
,
F.
, and
Puppo
,
E.
, 2000, “
Dynamic View-Dependent Multiresolution on a Client-Server Architecture
,”
Comput.-Aided Des.
0010-4485,
32
, pp.
805
823
.
17.
Fine
,
L.
,
Remondini
,
L.
, and
Leon
,
J. C.
, 2000, “
Automated Generation of FEA Models through Idealization Operators
,”
Int. J. Numer. Methods Eng.
0029-5981,
49
, pp.
83
108
.
18.
Loop
,
C.
, 1987, “
Smooth Subdivision Surfaces based on Triangles
,” Master thesis, University of Utah.
19.
Zorin
,
D.
, and
Schröder
,
P.
, 2000, “
Subdivision for Modeling and Animation
,” SIGGRAPH2000 Course Notes,
36
.
20.
Yau
,
H. T.
,
,
Kuo
,
C. C.
, and
Yeh
,
C. H.
, 2003, “
Extension of Surface Reconstruction Algorithm to the Global Stitching and Repairing of STL Models
,”
Comput.-Aided Des.
0010-4485,
35
, pp.
477
486
.
21.
Ju
,
T.
, 2004, “
Robust Repair of Polygonal Models
,”
Proceedings of the SIGGRAPH2004
,
ACM
, New York, pp.
888
895
.
22.
Page
,
D. L.
,
Sun
,
Y.
,
Koschan
,
A. F.
,
Paik
,
J.
, and
Abidi
,
M. A.
, 2002, “
Normal Vector Voting: Crease Detection and Curvature Estimation on Large, Noisy Meshes
,”
Graphical Models
,
64
, pp.
199
229
.
23.
IDEAS users manual
, 2003.
24.
Kanai
,
T.
,
Suzuki
,
H.
, and
Kimura
,
F.
, 2000, “
Metamorphosis of Arbitrary Triangular Meshes
,”
IEEE Comput. Graphics Appl.
0272-1716,
20
(
2
), pp.
62
75
.
25.
Date
,
H.
,
Kanai
,
S.
,
Kishinami
,
T.
,
Kobayashi
,
M.
, and
Iwakoshi
,
M.
, 2004, “
A Prototyping System for Surface Textured Shapes using Triangular Mesh Modeling and Stereo Lithography
,”
Proceedings of the 2004 Japan-USA Symposium on Flexible Automation
, Denver, Colorado, Paper No. JL018.
26.
Staadt
,
O. G.
, and
Gross
,
M. H.
, 1998, “
Progressive Tetrahedralizations
,”
Proceedings of the Conference on Visualization 98
,
IEEE Computer Society Press
, Washington, pp.
397
402
.
You do not currently have access to this content.