In this paper, we propose a new triangular finite element mesh generation scheme from various kinds of triangular meshes using the multiresolution technique. The proposed scheme consists of two methods: a mesh quality improvement method and a mesh property control method. The basic strategy of these methods is a combination of the mesh subdivision and simplification. Given mesh is first subdivided to obtain enough degree of freedom for a property change, then by simplification using edge collapse for the resulting mesh to change the mesh properties, we can easily improve and control the mesh properties required for finite element analysis.
1.
Owen
, S. J.
, 1998, “A Survey of Unstructured Mesh Generation Technology
,” Proc. 7th International Meshing Roundtable
, Dearborn
, Michigan, pp. 239
–267
.2.
Topping
, R. H. V.
, Muylle
, J.
, Iványi
, P.
, Putanowiez
, R.
, and Cheng
, B.
, 2004, Finite Element Mesh Generation
, Saxe-Couburg Publications
, Kippen, Chap. 3.3.
Shimada
, K.
, and Gossard
, D. C.
, 1995, “Bubble Mesh: Automated Triangular Meshing of Non-Manifold Geometry by Sphere Packing
,” Proc. ACM Symposium on Solid Modeling and Applications
, ACM
, pp. 409
–419
.4.
Bechet
, E.
, Cuilliere
, J. C.
, and Trochu
, F.
, 2002, “Generation of a Finite Element MESH from Stereolithography (STL) Files
,” Comput.-Aided Des.
0010-4485, 34
, pp. 1
–17
.5.
Bianconi
, F.
, 2002, “Bridging the Gap between CAD and CAE using STL Files
,” International Journal of CAD/CAM
, 2
(1
), pp. 55
–67
.6.
Floater
, M. S.
, 1997, “Parameterization and Smooth Approximation of Surface Triangulations
,” Comput. Aided Geom. Des.
0167-8396, 14
(3
), pp. 231
–250
.7.
Sheffer
, A.
, and Sturler
, E.
, 2001, “Parameterization of Faceted Surfaces for Meshing using Angle-based Flattening
,” Eng. Comput.
0177-0667, 17
(3
), pp. 326
–337
.8.
Alliez
, P.
, Meyer
, M.
, and Desbrun
, M.
, 2002, “Interactive Geometry Remeshing
,” Proc. SIGGRAPH’02
, ACM Press
, New York, pp. 347
–354
.9.
Stollnitz
, E. J.
, DeRose
, T. D.
, and Salesin
, D. H.
, 1996, Wavelets for Computer Graphics: Theory and Application
, Morgan Kaufmann
, San Francisco, Chap. 10.10.
Sifri
, O.
, Sheffer
, A.
, and Gotsman
, C.
, 2003, “Geodesic-based Surface Remeshing
,” Proceedings of the 12th International Meshing Roundtable
, Santa Fe, New Mexico, pp. 189
–199
.11.
Garland
, M.
, and Heckbert
, P. S.
, 1997, “Surface Simplification Using Quadric Error Metrics
,” Proceedings of the SIGGRAPH’97
, ACM Press
, New York, pp. 209
–216
.12.
Hoppe
, H.
, 1996, “Progressive Meshes
,” Proceedings of the SIGGRAPH’96
, ACM Press
, New York, pp. 98
–108
.13.
Luebke
, D.
, Reddy
, M.
, Cohen
, J. D.
, Varshney
, A.
, Watson
, B.
, and Huebner
, R.
, 2003, Level of Detail for 3D Graphics
, Morgan Kaufmann
, San Francisco.14.
Taubin
, G.
, Guéziec
, A.
, Hom
, W.
, and Lazarus
, F.
, 1998, “Progressive Forest Split Compression
,” Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques
, ACM Press
, New York, pp. 123
–132
.15.
Karabassi
, E. A.
, Papaioannou
, G.
, Fretzagia
, C.
and Theoharis
, T.
, 2003, “Exploiting Multiresolution Models to Accelerate Ray Tracing
,” Comput. Graphics
0097-8493, 27
, pp. 91
–98
.16.
Floriani
, L. D.
, Magillo
, P.
, Morando
, F.
, and Puppo
, E.
, 2000, “Dynamic View-Dependent Multiresolution on a Client-Server Architecture
,” Comput.-Aided Des.
0010-4485, 32
, pp. 805
–823
.17.
Fine
, L.
, Remondini
, L.
, and Leon
, J. C.
, 2000, “Automated Generation of FEA Models through Idealization Operators
,” Int. J. Numer. Methods Eng.
0029-5981, 49
, pp. 83
–108
.18.
Loop
, C.
, 1987, “Smooth Subdivision Surfaces based on Triangles
,” Master thesis, University of Utah.19.
Zorin
, D.
, and Schröder
, P.
, 2000, “Subdivision for Modeling and Animation
,” SIGGRAPH2000 Course Notes, 36
.20.
Yau
, H. T.
, , Kuo
, C. C.
, and Yeh
, C. H.
, 2003, “Extension of Surface Reconstruction Algorithm to the Global Stitching and Repairing of STL Models
,” Comput.-Aided Des.
0010-4485, 35
, pp. 477
–486
.21.
Ju
, T.
, 2004, “Robust Repair of Polygonal Models
,” Proceedings of the SIGGRAPH2004
, ACM
, New York, pp. 888
–895
.22.
Page
, D. L.
, Sun
, Y.
, Koschan
, A. F.
, Paik
, J.
, and Abidi
, M. A.
, 2002, “Normal Vector Voting: Crease Detection and Curvature Estimation on Large, Noisy Meshes
,” Graphical Models
, 64
, pp. 199
–229
.23.
IDEAS users manual
, 2003.24.
Kanai
, T.
, Suzuki
, H.
, and Kimura
, F.
, 2000, “Metamorphosis of Arbitrary Triangular Meshes
,” IEEE Comput. Graphics Appl.
0272-1716, 20
(2
), pp. 62
–75
.25.
Date
, H.
, Kanai
, S.
, Kishinami
, T.
, Kobayashi
, M.
, and Iwakoshi
, M.
, 2004, “A Prototyping System for Surface Textured Shapes using Triangular Mesh Modeling and Stereo Lithography
,” Proceedings of the 2004 Japan-USA Symposium on Flexible Automation
, Denver, Colorado, Paper No. JL018.26.
Staadt
, O. G.
, and Gross
, M. H.
, 1998, “Progressive Tetrahedralizations
,” Proceedings of the Conference on Visualization 98
, IEEE Computer Society Press
, Washington, pp. 397
–402
.Copyright © 2005
by American Society of Mechanical Engineers
You do not currently have access to this content.