Abstract

Hydraulic pumps are key drivers of fluid power-based machines and demand high reliability during operation. Internal leakage is a key performance deteriorating fault that reduces pump’s efficiency and limits its predictability and reliability. Thus, this article presents a methodology for detecting internal leakage in hydraulic pumps using an unbalanced dataset of its drive motor’s electrical power signals. Refined composite multiscale dispersion and fuzzy entropies along with three statistical indicators are extracted and followed by second-order polynomial-based features. These features are normalized and visualized using partial dependence plot (PDP) and individual conditional expectation (ICE). Subsequently, ten machine learning classifiers are trained using four features, and their statistical hypothesis test is performed using a 5 × 2 paired t-test cross-validation for p < 0.05. Subsequently, top four performing classifiers are optimized using grid and random search hyperparameter optimization techniques. Due to slight difference in their accuracies, an ensemble of three best-performing algorithms is trained using the majority voting classifiers (MaVCs) for three splitting ratios (80:20, 70:30, and 60:40). It is demonstrated that MaVC achieves the highest leakage detection accuracy of 90.91%.

References

1.
Gao
,
Y.
,
Zhang
,
Q.
, and
Kong
,
X.
,
2003
, “
Wavelet–Based Pressure Analysis for Hydraulic Pump Health Diagnosis
,”
Trans. ASAE
,
46
(
4
), p.
969
.
2.
Gao
,
Y.
, and
Zhang
,
Q.
,
2006
, “
A Wavelet Packet and Residual Analysis-Based Method for Hydraulic Pump Health Diagnosis
,”
Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
,
220
(
6
), pp.
735
745
.
3.
Amin
,
S.
,
Byington
,
C.
, and
Watson
,
M.
,
2005
, “
Fuzzy Inference and Fusion for Health State Diagnosis of Hydraulic Pumps and Motors
,”
NAFIPS 2005-2005 Annual Meeting of the North American Fuzzy Information Processing Society
,
Detroit, MI
,
June 26–28
, IEEE, pp.
13
18
.
4.
Miao
,
Y.
,
Jiang
,
Y.
,
Huang
,
J.
,
Zhang
,
X.
, and
Han
,
L.
,
2020
, “
Application of Fault Diagnosis of Seawater Hydraulic Pump Based on Transfer Learning
,”
Shock Vib.
,
2020
, Article ID 9630986.
5.
Bensaad
,
D.
,
Soualhi
,
A.
, and
Guillet
,
F.
,
2019
, “
A New Leaky Piston Identification Method in an Axial Piston Pump Based on the Extended Kalman Filter
,”
Measurement
,
148
.
6.
Tang
,
H.
,
Fu
,
Z.
, and
Huang
,
Y.
,
2021
, “
A Fault Diagnosis Method for Loose Slipper Failure of Piston Pump in Construction Machinery Under Changing Load
,”
Appl. Acoust.
,
172
, p.
107634
.
7.
Lan
,
Y.
,
Hu
,
J.
,
Huang
,
J.
,
Niu
,
L.
,
Zeng
,
X.
,
Xiong
,
X.
, and
Wu
,
B.
,
2018
, “
Fault Diagnosis on Slipper Abrasion of Axial Piston Pump Based on Extreme Learning Machine
,”
Measurement
,
124
, pp.
378
385
.
8.
Kivelä
,
T.
, and
Mattila
,
J.
,
2013
, “
Internal Leakage Fault Detection for Variable Displacement Axial Piston Pump
,”
Fluid Power Systems Technology
,
American Society of Mechanical Engineers
, Vol.
56086
, p.
V001T01A027
.
9.
Ranawat
,
N. S.
,
Miglani
,
A.
, and
Kankar
,
P. K.
,
2022
, “
Performance of Centrifugal Pump Over a Range of Composite Wear Ring Clearance
,”
J. Braz. Soc. Mech. Sci. Eng.
,
44
(
11
), pp.
1
18
.
10.
Pincus
,
S. M.
,
1991
, “
Approximate Entropy as a Measure of System Complexity
,”
Proc. Natl. Acad. Sci. USA.
,
88
(
6
), pp.
2297
2301
.
11.
Minhas
,
A. S.
,
Singh
,
G.
,
Singh
,
J.
,
Kankar
,
P. K.
, and
Singh
,
S.
,
2020
, “
A Novel Method to Classify Bearing Faults by Integrating Standard Deviation to Refined Composite Multi-Scale Fuzzy Entropy
,”
Measurement
,
154
, p.
107441
.
12.
Prakash
,
J.
,
Kankar
,
P. K.
, and
Miglani
,
A.
,
2021
, “
Monitoring the Degradation in the Switching Behavior of a Hydraulic Valve Using Recurrence Quantification Analysis and Fractal Dimensions
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
6
), p.
061010
.
13.
Ruta
,
D.
, and
Gabrys
,
B.
,
2005
, “
Classifier Selection for Majority Voting
,”
Inf. Fusion
,
6
(
1
), pp.
63
81
.
14.
Kang
,
Q.
,
Shi
,
L.
,
Zhou
,
M.
,
Wang
,
X.
,
Wu
,
Q.
, and
Wei
,
Z.
,
2017
, “
A Distance-Based Weighted Undersampling Scheme for Support Vector Machines and Its Application to Imbalanced Classification
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
29
(
9
), pp.
4152
4165
.
15.
Moreo
,
A.
,
Esuli
,
A.
, and
Sebastiani
,
F.
,
2016
, “
Distributional Random Oversampling for Imbalanced Text Classification
,”
Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval
,
Pisa, Italy
,
July 17–21
, pp.
805
808
.
16.
Helwig
,
N.
,
Pignanelli
,
E.
, and
Schütze
,
A.
,
2015
, “
Condition Monitoring of a Complex Hydraulic System Using Multivariate Statistics
,”
2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings
,
Pisa, Italy
,
May 11–14
,
IEEE
, pp.
210
215
.
17.
Shi
,
Q.
, and
Zhang
,
H.
,
2020
, “
Fault Diagnosis of an Autonomous Vehicle With an Improved SVM Algorithm Subject to Unbalanced Datasets
,”
IEEE Trans. Ind. Electron.
18.
Chen
,
W.
,
Wang
,
Z.
,
Xie
,
H.
, and
Yu
,
W.
,
2007
, “
Characterization of Surface EMG Signal Based on Fuzzy Entropy
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
15
(
2
), pp.
266
272
.
19.
Azami
,
H.
,
Fernández
,
A.
, and
Escudero
,
J.
,
2017
, “
Refined Multiscale Fuzzy Entropy Based on Standard Deviation for Biomedical Signal Analysis
,”
Med. Biol. Eng. Comput.
,
55
(
11
), pp.
2037
2052
.
20.
Li
,
C.
,
Zheng
,
J.
,
Pan
,
H.
,
Tong
,
J.
, and
Zhang
,
Y.
,
2019
, “
Refined Composite Multivariate Multiscale Dispersion Entropy and Its Application to Fault Diagnosis of Rolling Bearing
,”
IEEE Access
,
7
, pp.
47663
47673
.
21.
Azami
,
H.
,
Rostaghi
,
M.
,
Abásolo
,
D.
, and
Escudero
,
J.
,
2017
, “
Refined Composite Multiscale Dispersion Entropy and Its Application to Biomedical Signals
,”
IEEE Trans. Biomed. Eng.
,
64
(
12
), pp.
2872
2879
.
22.
Prakash
,
J.
, and
Kankar
,
P. K.
,
2021
, “Determining the Working Behaviour of Hydraulic System Using Support Vector Machine,”
Advances in Systems Engineering
,
V. H.
Saran
and
R. K.
Mishra
, eds.,
Springer
,
Singapore
, pp.
781
791
.
23.
Sharma
,
A.
,
Amarnath
,
M.
, and
Kankar
,
P. K.
,
2017
, “
Novel Ensemble Techniques for Classification of Rolling Element Bearing Faults
,”
J. Braz. Soc. Mech. Sci. Eng.
,
39
(
3
), pp.
709
724
.
24.
Prakash
,
J.
, and
Kankar
,
P. K.
,
2020
, “
Health Prediction of Hydraulic Cooling Circuit Using Deep Neural Network With Ensemble Feature Ranking Technique
,”
Measurement
,
151
, p.
107225
.
25.
Prakash
,
J.
,
Kankar
,
P. K.
, and
Miglani
,
A.
,
2021
, “
Internal Leakage Detection in a Hydraulic Pump Using Exhaustive Feature Selection and Ensemble Learning
,”
2021 International Conference on Maintenance and Intelligent Asset Management (ICMIAM)
,
Ballarat, Australia
,
Dec. 12–15
,
IEEE
, pp.
1
6
.
26.
Goldstein
,
A.
,
Kapelner
,
A.
,
Bleich
,
J.
, and
Pitkin
,
E.
,
2015
, “
Peeking Inside the Black Box: Visualizing Statistical Learning With Plots of Individual Conditional Expectation
,”
J. Comput. Graph. Stat.
,
24
(
1
), pp.
44
65
.
27.
Obregon
,
J.
,
Hong
,
J.
, and
Jung
,
J. Y.
,
2021
, “
Rule-Based Explanations Based on Ensemble Machine Learning for Detecting Sink Mark Defects in the Injection Moulding Process
,”
J. Manuf. Syst.
,
60
, pp.
392
405
.
28.
Song
,
Y. Y.
, and
Ying
,
L. U.
,
2015
, “
Decision Tree Methods: Applications for Classification and Prediction
,”
Shanghai Arch. Psychiatry
,
27
(
2
), p.
130
.
29.
Vakharia
,
V.
,
Gupta
,
V. K.
, and
Kankar
,
P. K.
,
2017
, “
Efficient Fault Diagnosis of Ball Bearing Using Relief and Random Forest Classifier
,”
J. Braz. Soc. Mech. Sci. Eng.
,
39
(
8
), pp.
2969
2982
.
30.
Saeed
,
U.
,
Jan
,
S. U.
,
Lee
,
Y. D.
, and
Koo
,
I.
,
2021
, “
Fault Diagnosis Based on Extremely Randomized Trees in Wireless Sensor Networks
,”
Reliab. Eng. Syst. Saf.
,
205
, p.
107284
.
31.
Freund
,
Y.
, and
Schapire
,
R. E.
,
1997
, “
A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
,”
J. Comput. Syst. Sci.
,
55
(
1
), pp.
119
139
.
32.
Friedman
,
J. H.
,
2001
, “
Greedy Function Approximation: A Gradient Boosting Machine
,”
Ann. Stat.
, pp.
1189
1232
.
33.
Tang
,
J.
,
Deng
,
C.
, and
Huang
,
G. B.
,
2015
, “
Extreme Learning Machine for Multilayer Perceptron
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
27
(
4
), pp.
809
821
.
34.
Balakrishnama
,
S.
, and
Ganapathiraju
,
A.
,
1998
, “
Linear Discriminant Analysis—A Brief Tutorial
,”
Inst. Signal Inf. Process.
,
18
, pp.
1
8
.
35.
Kankar
,
P. K.
,
Sharma
,
S. C.
, and
Harsha
,
S. P.
,
2011
, “
Fault Diagnosis of Ball Bearings Using Continuous Wavelet Transform
,”
Appl. Soft Comput.
,
11
(
2
), pp.
2300
2312
.
36.
Ranawat
,
N. S.
,
Kankar
,
P. K.
, and
Miglani
,
A.
,
2021
, “
Fault Diagnosis in Centrifugal Pump Using Support Vector Machine and Artificial Neural Network
,”
J. Eng. Res.
, Special Issue, p.
99
.
37.
Chen
,
T.
, and
Guestrin
,
C.
,
2016
, “
Xgboost: A Scalable Tree Boosting System
,”
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
,
San Francisco, CA
,
Aug. 13–17
, pp.
785
794
.
38.
Ke
,
G.
,
Meng
,
Q.
,
Finley
,
T.
,
Wang
,
T.
,
Chen
,
W.
,
Ma
,
W.
, and
Liu
,
T. Y.
,
2017
, “Lightgbm: A Highly Efficient Gradient Boosting Decision Tree,”
Advances in Neural Information Processing Systems
, Vol.
30
,
MIT Press
, pp.
3146
3154
.
39.
Raschka
,
S.
,
2018
, “
Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning
,”
arXiv preprint
. https://arxiv.org/abs/1811.12808
40.
Syarif
,
I.
,
Prugel-Bennett
,
A.
, and
Wills
,
G.
,
2016
, “
SVM Parameter Optimization Using Grid Search and Genetic Algorithm to Improve Classification Performance
,”
Telkomnika
,
14
(
4
), p.
1502
.
41.
Bergstra
,
J.
, and
Bengio
,
Y.
,
2012
, “
Random Search for Hyper-Parameter Optimization
,”
J. Mach. Learn. Res.
,
13
(
2
), pp.
281
305
.
42.
Lam
,
L.
, and
Suen
,
S. Y.
,
1997
, “
Application of Majority Voting to Pattern Recognition: an Analysis of Its Behavior and Performance
,”
IEEE Trans. Syst. Man Cybern. Part A Syst. Humans
,
27
(
5
), pp.
553
568
.
43.
Jose
,
J. T.
,
Das
,
J.
,
Mishra
,
S. K.
, and
Wrat
,
G.
,
2021
, “
Early Detection and Classification of Internal Leakage in Boom Actuator of Mobile Hydraulic Machines Using SVM
,”
Eng. Appl. Artif. Intell.
,
106
, p.
104492
.
44.
Goharrizi
,
A. Y.
,
Sepehri
,
N.
, and
Wu
,
Y.
,
2011
, “
A Wavelet-Based Approach for Online External Leakage Diagnosis and Isolation From Internal Leakage in Hydraulic Actuators
,”
Int. J. Fluid Power
,
12
(
2
), pp.
37
47
.
45.
Yu
,
H.
, and
Ni
,
J.
,
2014
, “
An Improved Ensemble Learning Method for Classifying High-Dimensional and Imbalanced Biomedicine Data
,”
IEEE/ACM Trans. Comput. Biol. Bioinform.
,
11
(
4
), pp.
657
666
.
46.
Lee
,
T. S.
, and
Chen
,
I. F.
,
2005
, “
A Two-Stage Hybrid Credit Scoring Model Using Artificial Neural Networks and Multivariate Adaptive Regression Splines
,”
Expert Syst. Appl.
,
28
(
4
), pp.
743
752
.
You do not currently have access to this content.