Abstract

This paper presents an efficient tool path planning strategy for three-axis computer numeric control (CNC) machining using curvature-based segmentation (CBS) of freeform surface from its representation in the form of a point cloud. Curvature parameters estimated over the point data are used to partition the surface into convex, concave, and saddle-like regions. Grid-based adaptive planar tool path planning strategy is developed to machine each region separately within its boundaries. In addition to the region-by-region machining, a strategy to stitch the obtained regions is also developed to minimize the tool lifts and tool marks. The developed region-based tool path planning strategy is compared with the point-cloud-based adaptive planar strategy, iso-scallop strategy, and commercial software for parts with various complexities. The result shows significant improvement in terms of performance parameters, namely, machining time, tool path length, and code length while maintaining the desired part surface quality. The proposed method is also tested by machining a real surface and analyzing its surface quality.

References

1.
Lasemi
,
A.
,
Xue
,
D.
, and
Gu
,
P.
,
2010
, “
Recent Development in CNC Machining of Freeform Surfaces: A State-of-the-Art Review
,”
CAD Comput. Aided Des.
,
42
(
7
), pp.
641
654
. 10.1016/j.cad.2010.04.002
2.
Zhongwei
,
Y.
, and
Shouwei
,
J.
,
2004
, “
Iso-Phote Based Adaptive Surface Fitting to Digitized Points and Its Applications in Region-Based Tool Path Generation, Slicing and Surface Triangulation
,”
Comput. Ind.
,
55
(
1
), pp.
15
28
. 10.1016/j.compind.2004.01.002
3.
Choi
,
B. K.
,
Shin
,
H. Y.
,
Yoon
,
Y. I.
, and
Lee
,
J. W.
,
1988
, “
Triangulation of Scattered Date in 3D Space
,”
Comput. Des.
,
20
(
5
), pp.
239
248
. 10.1016/0010-4485(88)90069-3
4.
Park
,
H.
, and
Kim
,
K.
,
1995
, “
An Adaptive Method for Smooth Surface Approximation to Scattered 3D Points
,”
Comput. Des.
,
27
(
12
), pp.
929
939
. 10.1016/0010-4485(95)00006-2
5.
Lee
,
A. C.
,
Chen
,
D. P.
, and
Lin
,
C. L.
,
1990
, “
A CAD/CAM System From 3D Coordinate Measuring Data
,”
Int. J. Prod. Res.
,
28
(
12
), pp.
2353
2371
. 10.1080/00207549008942871
6.
Chui
,
K. L.
,
Chiu
,
W. K.
, and
Yu
,
K. M. Ã.
,
2008
, “
Direct 5-Axis Tool-Path Generation From Point Cloud Input Using 3D Biarc Fitting
,”
Robot. Comput. Integr. Manuf.
,
24
(
2
), pp.
270
286
. 10.1016/j.rcim.2006.11.004
7.
Masood
,
A.
,
Siddiqui
,
R.
,
Pinto
,
M.
,
Rehman
,
H.
, and
Khan
,
M. A.
,
2015
, “
Tool Path Generation, for Complex Surface Machining, Using Point Cloud Data
,”
Procedia CIRP
,
26
, pp.
397
402
. 10.1016/j.procir.2014.07.076
8.
Feng
,
H. Y.
, and
Teng
,
Z.
,
2005
, “
Iso-Planar Piecewise Linear NC Tool Path Generation From Discrete Measured Data Points
,”
CAD Comput. Aided Des.
,
37
(
1
), pp.
55
64
. 10.1016/j.cad.2004.04.001
9.
Kayal
,
P.
,
2009
, “
Inverse Offset Method for Adaptive Cutter Path Generation From Point-Based Surface
,”
Int. J. CAD/CAM
,
7
(
1
), pp.
1
18
.
10.
Ghogare
,
S.
, and
Pande
,
S. S.
,
2018
, “
Efficient CNC Tool Path Planning Using Point Cloud
,”
ASME 13th International Manufacturing Science and Engineering Conference
,
College Station, TX
,
June 18–22
, p.
V004T03A019
,
Volume 4
.”
11.
Dhanda
,
M.
, and
Pande
,
S. S.
,
2019
, “
Adaptive Tool Path Planning Strategy for Freeform Surface Machining Using Point Cloud
,”
Comput. Aided. Des. Appl.
,
16
(
2
), pp.
289
307
. 10.14733/cadaps.2019.289-307
12.
Xu
,
J.
,
Xu
,
L.
,
Sun
,
Y.
,
Lee
,
Y. S.
, and
Zhao
,
J.
,
2019
, “
A Method of Generating Spiral Tool Path for Direct Three-Axis Computer Numerical Control Machining of Measured Cloud of Point
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
4
), p.
041015
. 10.1115/1.4043532
13.
Teng
,
Z.
,
Feng
,
H. Y.
, and
Azeem
,
A.
,
2006
, “
Generating Efficient Tool Paths From Point Cloud Data via Machining Area Segmentation
,”
Int. J. Adv. Manuf. Technol.
,
30
(
3–4
), pp.
254
260
. 10.1007/s00170-005-0081-2
14.
Liu
,
X.
,
Li
,
Y.
, and
Li
,
Q.
,
2018
, “
A Region-Based 3 + 2-Axis Machining Toolpath Generation Method for Freeform Surface
,”
Int. J. Adv. Manuf. Technol.
,
97
(
1–4
), pp.
1149
1163
. 10.1007/s00170-018-1982-1
15.
Van Tuong
,
N.
, and
Pokorný
,
P.
,
2010
, “
A Practical Approach for Partitioning Free-Form Surfaces
,”
Int. J. Comput. Integr. Manuf.
,
23
(
11
), pp.
992
1001
. 10.1080/0951192X.2010.506656
16.
Zhen
,
X.
,
Seng
,
J. C. Y.
, and
Somani
,
N.
,
2019
, “
Adaptive Automatic Robot Tool Path Generation Based on Point Cloud Projection Algorithm
,”
IEEE International Conference on Emergency Technologies and Factory Automation, ETFA
,
Zaragoza, Spain
,
Sept. 10–13
, pp.
341
347
.
17.
Xu
,
J.
,
Geng
,
Z.
,
Sun
,
Y.
, and
Li
,
L.
,
2019
, “
Generating Gouge-Free Tool Paths for Ball-End Cutter CNC Milling of Cloud of Point by Projecting Guide Curves
,”
Int. J. Adv. Manuf. Technol.
,
102
(
5–8
), pp.
1193
1204
. 10.1007/s00170-018-2973-y
18.
Pavanaskar
,
S.
,
Pande
,
S.
,
Kwon
,
Y.
,
Hu
,
Z.
,
Sheffer
,
A.
, and
McMains
,
S.
,
2015
, “
Energy-Efficient Vector Field Based Toolpaths for CNC Pocketmachining
,”
J. Manuf. Process.
,
20
(
1
), pp.
314
320
. 10.1016/j.jmapro.2015.06.009
19.
Tuong
,
N. V.
,
Pokomy
,
P.
, and
Hieu
,
L. C.
,
2009
, “
Free-Form Surface Partitioning for 5-Axis CNC Milling Based on Surface Curvature and Chain Codes
,”
Innovative Production Machines and Systems: Fifth I PROMS Virtual International Conference
,
Cardiff, UK
,
July 6–17
, Whittles Publishing, pp.
120
125
.
20.
Elber
,
G.
, and
Cohen
,
E.
,
1993
, “
Second-Order Surface Analysis Using Hybrid Symbolic and Numeric Operators
,”
ACM Trans. Graph.
,
12
(
2
), pp.
160
178
. 10.1145/151280.151283
21.
Radzevich
,
S. P.
,
2005
, “
A Cutting-Tool-Dependent Approach for Partitioning of Sculptured Surface
,”
CAD Comput. Aided Des.
,
37
(
7
), pp.
767
778
. 10.1016/j.cad.2003.01.001
22.
Chen
,
Z. C.
,
Dong
,
Z.
, and
Vickers
,
G. W.
,
2003
, “
Automated Surface Subdivision and Tool Path Generation for 3 1/2 1/2-Axis CNC Machining of Sculptured Parts
,”
Comput. Ind.
,
50
(
3
), pp.
319
331
. 10.1016/S0166-3615(03)00019-8
23.
Roman
,
A.
, and
Bedi
,
S. I. F.
,
2006
, “
Three-Half and Half-Axis Patch-by-Patch NC Machining of Sculptured Surfaces
,”
Int. J. Adv. Manuf. Techno.
,
29
(
5
), pp.
524
531
. 10.1007/s00170-005-2553-9
24.
Ding
,
S.
,
Mannan
,
M. A.
,
Poo
,
A. N.
,
Yang
,
D. C. H.
, and
Han
,
Z.
,
2003
, “
Adaptive Iso-Planar Tool Path Generation for Machining of Free-Form Surfaces
,”
Comput. Des.
,
35
(
2
), pp.
141
153
. 10.1016/S0010-4485(02)00048-9
25.
Ding
,
S.
,
Mannan
,
M. A.
,
Poo
,
A. N.
,
Yang
,
D. C. H.
, and
Han
,
Z.
,
2005
, “
The Implementation of Adaptive Isoplanar Tool Path Generation for the Machining of Free-Form Surfaces
,”
Int. J. Adv. Manuf. Technol.
,
26
(
7–8
), pp.
852
860
. 10.1007/s00170-004-2058-y
26.
Vahebi Nojedeh
,
M.
,
Habibi
,
M.
, and
Arezoo
,
B.
,
2011
, “
Tool Path Accuracy Enhancement Through Geometrical Error Compensation
,”
Int. J. Mach. Tools Manuf.
,
51
(
6
), pp.
471
482
. 10.1016/j.ijmachtools.2011.02.005
27.
Jia
,
Z.
,
Zhao
,
X.
,
Ma
,
J.
,
Chen
,
S.
,
Qin
,
F.
, and
Liu
,
Z.
,
2019
, “
Toolpath Generation in Sub-Regional Processing With Constraint of Constant Scallop-Height at Boundary for Complex Curved Surface
,”
Precis. Eng.
,
55
(
June 2018
), pp.
217
230
. 10.1016/j.precisioneng.2018.09.009
28.
Klasing
,
K.
,
2009
, “
Surface-Based Segmentation of 3D Range Data, Technical Report TR-LSR-2009-10-1
,”
Institute of Automatic Control Engineering, Technische Universtät München
,
Germany
, pp.
1
18
.
29.
Gonzalez Rafael
,
C.
, and
Woods
,
R. E.
,
2004
,
Digital Image Processing Using Matlab
,
Pearson Prentice Hall
,
Upper Saddle River
.
30.
Kukreja
,
A.
, and
Pande
,
S. S.
,
2019
, “
Estimation of Scallop Height in Freeform Surface CNC Machining
,”
Int. J. Adv. Manuf. Technol.
,
104
(
9–12
), pp.
4231
4242
. 10.1007/s00170-019-04269-x
31.
Liu
,
W.
,
Zhou
,
L. S.
, and
An
,
L. L.
,
2012
, “
Constant Scallop-Height Tool Path Generation for Three-Axis Discrete Data Points Machining
,”
Int. J. Adv. Manuf. Technol.
,
63
(
1–4
), pp.
137
146
. 10.1007/s00170-011-3892-3
You do not currently have access to this content.