Abstract

The presently achieved research results are not effective for the design of complex mechanical products when various methods and tools in different schemes have to be employed at different design stages. A new integrated framework for the optimal design of complex mechanical products is introduced in this research considering modeling, simulation, and optimization aspects. First, a hybrid scheme is developed for the integrated modeling of complex mechanical products. In this hybrid scheme, descriptions of a generic product are modeled by an and-or tree. Feasible design candidates are created from the and-or tree through tree-based search. Geometric descriptions in a design candidate are associated with a computer-aided design (CAD) system. Second, a hybrid simulation method is developed for the evaluation of different product aspects with different simulation tools which are integrated through the hybrid modeling scheme. Simulations with geometric descriptions are conducted by analysis functions of the CAD system. Simulations with non-geometric descriptions are conducted by the knowledge-based systems. Third, a hybrid optimization method is developed to identify the optimal design of the complex mechanical product. For each design candidate, parameter optimization is conducted to obtain the optimal parameter values. The optimal design solution is identified from all design candidates through configuration optimization. A prototype system has been implemented for conceptual design and detailed design of complex mechanical products.

References

1.
Lyu
,
G.
,
Chu
,
X.
, and
Xue
,
D.
,
2017
, “
Product Modeling From Knowledge, Distributed Computing and Lifecycle Perspectives: A Literature Review
,”
Comput. Ind.
,
84
, pp.
1
13
. 10.1016/j.compind.2016.11.001
2.
Bhise
,
V. D.
,
2014
,
Designing Complex Products With Systems Engineering Processes and Techniques
,
CRC Press
,
Boca Raton, FL
.
3.
Xue
,
D.
, and
Imaniyan
,
D.
,
2018
, “
A Framework for Optimal Design of Complex Products
,”
Proceedings of the 28th CIRP Design Conference
,
Nantes, France
,
May 23–25
, pp.
416
421
.
4.
Mobus
,
G. E.
, and
Kalton
,
M. C.
,
2015
,
Principles of Systems Science—Understanding Complex Systems
,
Springer
,
New York, NY
.
5.
Mastinu
,
G.
,
Gobbi
,
M.
, and
Miano
,
C.
,
2009
,
Optimal Design of Complex Mechanical Systems: With Applications to Vehicle Engineering
,
Springer
,
New York, NY
.
6.
Zhang
,
N.
,
Yang
,
Y.
,
Zheng
,
Y. J.
, and
Su
,
J. F.
,
2019
, “
Module Partition of Complex Mechanical Products Based on Weighted Complex Networks
,”
J. Intell. Manuf.
,
30
(
4
), pp.
1973
1998
. 10.1007/s10845-017-1367-6
7.
Trattner
,
A.
,
Hvam
,
L.
,
Forza
,
C.
, and
Herbert-Hansen
,
Z. N. L.
,
2019
, “
Product Complexity and Operational Performance: A Systematic Literature Review
,”
CIRP J. Manuf. Sci. Technol.
,
25
, pp.
69
83
. 10.1016/j.cirpj.2019.02.001
8.
Barbau
,
R.
,
Krima
,
S.
,
Rachuri
,
S.
,
Narayanan
,
A.
,
Fiorentini
,
X.
,
Foufou
,
S.
, and
Sriram
,
R. D.
,
2012
, “
OntoSTEP: Enriching Product Model Data Using Ontologies
,”
Comput.-Aided Des.
,
44
(
6
), pp.
575
590
. 10.1016/j.cad.2012.01.008
9.
Chandrasegaran
,
S. K.
,
Ramani
,
K.
,
Sriram
,
R. D.
,
Horváth
,
I.
,
Bernard
,
A.
,
Harik
,
R. F.
, and
Gao
,
W.
,
2013
, “
The Evolution, Challenges, and Future of Knowledge Representation in Product Design Systems
,”
Comput.-Aided Des.
,
45
(
2
), pp.
204
228
. 10.1016/j.cad.2012.08.006
10.
Demoly
,
F.
,
Dutartre
,
O.
,
Yan
,
X. T.
,
Eynard
,
B.
,
Kiritsis
,
D.
, and
Gomes
,
S.
,
2013
, “
Product Relationships Management Enabler for Concurrent Engineering and Product Lifecycle Management
,”
Comput. Ind.
,
64
(
7
), pp.
833
848
. 10.1016/j.compind.2013.05.004
11.
Sakao
,
T.
,
Shimomura
,
Y.
,
Sundin
,
E.
, and
Comstock
,
M.
,
2009
, “
Modeling Design Objects in CAD System for Service/Product Engineering
,”
Comput.-Aided Des.
,
41
(
3
), pp.
197
213
. 10.1016/j.cad.2008.06.006
12.
Shokohyar
,
S.
,
Mansour
,
S.
, and
Karimi
,
B.
,
2014
, “
A Model for Integrating Services and Product EOL Management in Sustainable Product Service System (S-PSS)
,”
J. Intell. Manuf.
,
25
(
3
), pp.
427
440
. 10.1007/s10845-012-0694-x
13.
Bonvoisin
,
J.
,
Halstenberg
,
F.
,
Buchert
,
T.
, and
Stark
,
R.
,
2016
, “
A Systematic Literature Review on Modular Product Design
,”
J. Eng. Des.
,
27
(
7
), pp.
488
514
. 10.1080/09544828.2016.1166482
14.
Otto
,
K.
,
Holtta-Otto
,
K.
,
Simpson
,
T. W.
,
Krause
,
D.
,
Ripperda
,
S.
, and
Moon
,
S. K.
,
2016
, “
Global Views on Modular Design Research: Linking Alternative Methods to Support Modular Product Family Concept Development
,”
ASME J. Mech. Des.
,
138
(
7
), p.
071101
. 10.1115/1.4033654
15.
Gu
,
P.
,
Xue
,
D.
, and
Nee
,
A. Y. C.
,
2009
, “
Adaptable Design: Concepts, Methods and Applications
,”
J. Eng. Manuf.
,
223
(
11
), pp.
1367
1387
. 10.1243/09544054JEM1387
16.
Koren
,
Y.
,
Hu
,
S. J.
,
Gu
,
P.
, and
Shpitalni
,
M.
,
2013
, “
Open-Architecture Products
,”
CIRP Ann. Manuf. Technol.
,
62
(
2
), pp.
719
729
. 10.1016/j.cirp.2013.06.001
17.
Srinivasan
,
V.
,
2008
, “
Standardizing the Specification, Verification, and Exchange of Product Geometry: Research, Status and Trends
,”
Comput. Aided Des.
,
40
(
7
), pp.
738
749
. 10.1016/j.cad.2007.06.006
18.
El Kadiri
,
S.
, and
Kiritsis
,
D.
,
2015
, “
Ontologies in the Context of Product Lifecycle Management: State of the Art Literature Review
,”
Int. J. Prod. Res.
,
53
(
18
), pp.
5657
5668
. 10.1080/00207543.2015.1052155
19.
Shukor
,
S. A.
, and
Axinte
,
D. A.
,
2009
, “
Manufacturability Analysis System: Issues and Future Trends
,”
Int. J. Prod. Res.
,
47
(
5
), pp.
1369
1390
. 10.1080/00207540701589398
20.
Lu
,
C.
,
Fuh
,
J. Y. H.
, and
Wong
,
Y. S.
,
2006
, “
Evaluation of Product Assemblability in Different Assembly Sequences Using the Tolerancing Approach
,”
Int. J. Prod. Res.
,
44
(
23
), pp.
5037
5063
. 10.1080/00207540600579656
21.
Giudice
,
F.
, and
Fargione
,
G.
,
2007
, “
Disassembly Planning of Mechanical Systems for Service and Recovery: A Genetic Algorithms Based Approach
,”
J. Intell. Manuf.
,
18
(
3
), pp.
313
329
. 10.1007/s10845-007-0025-9
22.
Telenko
,
C.
, and
Seepersad
,
C. C.
,
2010
, “
A Methodology for Identifying Environmentally Conscious Guidelines for Product Design
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091009
. 10.1115/1.4002145
23.
Gershenson
,
J. K.
,
Prasad
,
G. J.
, and
Zhang
,
Y.
,
2003
, “
Product Modularity: Definitions and Benefits
,”
J. Eng. Des.
,
14
(
3
), pp.
295
313
. 10.1080/0954482031000091068
24.
Gershenson
,
J. K.
,
Prasad
,
G. J.
, and
Zhang
,
Y.
,
2004
, “
Product Modularity: Measures and Design Methods
,”
J. Eng. Des.
,
15
(
1
), pp.
33
51
. 10.1080/0954482032000101731
25.
Thevenot
,
H. J.
, and
Simpson
,
T. W.
,
2006
, “
Commonality Indices for Product Family Design: A Detailed Comparison
,”
J. Eng. Des.
,
17
(
2
), pp.
99
119
. 10.1080/09544820500275693
26.
Jiao
,
J.
, and
Tseng
,
M. M.
,
2004
, “
Customizability Analysis in Design for Mass Customization
,”
Comput.-Aided Des.
,
36
(
8
), pp.
745
757
. 10.1016/j.cad.2003.09.012
27.
Li
,
Y.
,
Xue
,
D.
, and
Gu
,
P.
,
2008
, “
Design for Product Adaptability
,”
Concurrent Eng.: Res. Appl.
,
16
(
3
), pp.
221
232
. 10.1177/1063293X08096178
28.
Collette
,
Y.
, and
Siarry
,
P.
,
2013
,
Multiobjective Optimization: Principles and Case Studies
,
Springer
,
New York, NY
.
29.
Younis
,
A.
, and
Dong
,
Z.
,
2010
, “
Trends, Features, and Tests of Common and Recently Introduced Global Optimization Methods
,”
Eng. Optim
.,
42
(
8
), pp.
691
718
. 10.1080/03052150903386674
30.
Viana
,
F. A. C.
,
Simpson
,
T. W.
,
Balabanov
,
V.
, and
Toropov
,
V.
,
2014
, “
Metamodeling in Multidisciplinary Design Optimization: How Far Have We Really Come?
,”
AIAA J.
,
52
(
4
), pp.
670
690
. 10.2514/1.J052375
31.
Hong
,
G.
,
Hu
,
L.
,
Xue
,
D.
,
Tu
,
Y. L.
, and
Xiong
,
Y. L.
,
2008
, “
Identification of the Optimal Product Configuration and Parameters Based on Individual Customer Requirements on Performance and Costs in One-of-a-Kind Production
,”
Int. J. Prod. Res.
,
46
(
12
), pp.
3297
3366
. 10.1080/00207540601099274
32.
Yu
,
B.
,
Zhao
,
H.
, and
Xue
,
D.
,
2017
, “
A Multi-Population Co-Evolutionary Genetic Programming Approach for Optimal Mass Customization Production
,”
Int. J. Prod. Res.
,
55
(
3
), pp.
621
641
. 10.1080/00207543.2016.1194538
33.
Xue
,
D.
,
1997
, “
A Multi-Level Optimization Approach Considering Product Realization Process Alternatives and Parameters for Improving Manufacturability
,”
J. Manuf. Syst.
,
16
(
5
), pp.
337
351
. 10.1016/S0278-6125(97)88464-6
34.
Xue
,
D.
, and
Xu
,
Y.
,
2003
, “
Web-Based Distributed System and Database Modeling for Concurrent Design
,”
Comput.-Aided Des.
,
35
(
5
), pp.
433
452
. 10.1016/S0010-4485(02)00068-4
35.
Yang
,
H.
,
Xue
,
D.
, and
Tu
,
Y. L.
,
2006
, “
Modeling of the Non-Linear Relations Among Different Design and Manufacturing Evaluation Measures for Multi-Objective Optimal Concurrent Design
,”
Concurrent Eng.: Res. Appl.
,
14
(
1
), pp.
43
53
. 10.1177/1063293X06063842
You do not currently have access to this content.