Abstract

A new method is proposed to determine the points on the medial axis transform (MAT) of an object from its surface mesh representation. Current art typically uses a Voronoi diagram-based approach to generate the medial axis of a given point cloud on the boundary of the object or a surface mesh representation as input. This approach defines the MAT points as a subset of the Voronoi vertices close to the medial axis, where the accuracy and density of the points on the medial axis depend on the sampling density of the input point cloud representation. Therefore, the set of medial axis points is incomplete and may lack various topological features of the MAT and its reconstruction property. Instead of filtering the Voronoi vertices that are not medial points, the method proposed in this paper searches for the correct MAT point in the vicinity of such Voronoi vertices and finds the pair of corresponding footpoints using the properties of the MAT point. Hence, the algorithm can determine points on the medial axis without being dependent on the given sampling density and even in the presence of inputs having non-manifold entities. As the MAT points are generated based on the definition of medial axis (MA), the result obtained is accurate to within a specified tolerance.

References

1.
Dey
,
T. K.
, and
Zhao
,
W.
,
2004
, “
Approximate Medial Axis as a Voronoi Subcomplex
,”
Comput.-Aided Des.
,
36
(
2
), pp.
195
202
. 10.1016/S0010-4485(03)00061-7
2.
Blum
,
H.
, and
Nagel
,
R. N.
,
1978
, “
Shape Description Using Weighted Symmetric Axis Features
,”
Pattern Recognit.
,
10
(
3
), pp.
167
180
. 10.1016/0031-3203(78)90025-0
3.
Pizer
,
S. M.
,
Oliver
,
W. R.
, and
Bloomberg
,
S. H.
,
1987
, “
Hierarchical Shape Description Via the Multiresolution Symmetric Axis Transform
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
PAMI-9
(
4
), pp.
505
511
. 10.1109/TPAMI.1987.4767938
4.
Zaboli
,
H.
,
Rahmati
,
M.
, and
Mirzaei
,
A.
,
2008
, “
Shape Recognition by Clustering and Matching of Skeletons
,”
J. Comput.
,
3
(
5
), pp.
24
33
. 10.4304/jcp.3.5.24-33
5.
Asian
,
C.
, and
Tari
,
S.
,
2005
, “
An Axis-Based Representation for Recognition
,”
ICCV: IEEE International Conference on Computer Vision
,
Beijing, China
,
Oct. 17–20
, pp.
1339
1346
.
6.
Van Eede
,
M.
,
Macrini
,
D.
,
Telea
,
A.
,
Sminchisescu
,
C.
, and
Dickinson
,
S. S.
,
2006
, “
Canonical Skeletons for Shape Matching
,”
Pattern Recognition, 2006. ICPR 2006. 18th International Conference
,
Hong Kong
, Vol.
2
,
IEEE
.
7.
Tam
,
R.
, and
Heidrich
,
W.
,
2003
, “
Shape Simplification Based on the Medial Axis Transform
,”
Proceedings of the Conference on Visualization
,
Seattle, WA
,
IEEE Computer Society
, pp.
481
488
.
8.
Wan
,
M.
,
Dachille
,
F.
, and
Kaufman
,
A.
,
2001
, “
Distance-Field Based Skeletons for Virtual Navigation
,”
Proceedings of the Conference on Visualization
,
San Diego, CA
,
Oct. 21–26
,
IEEE Computer Society
.
9.
Paik
,
D. S.
,
Beaulieu
,
C. F.
,
Brooke Jeffrey
,
R.
,
Rubin
,
G. D.
, and
Napel
,
S.
,
1998
, “
Automated Flight Path Planning for Virtual Endoscopy
,”
Med. Phys.
,
25
(
5
), pp.
629
637
. 10.1118/1.598244
10.
Sharma
,
G. K.
, and
Gurumoorthy
,
B.
,
2020
, “
Iso-Material Contour Representation for Process Planning of Heterogeneous Object Model
,”
J. Comput. Des. Eng.
,
7
(
4
), pp.
498
513
.10.1093/jcde/qwz001
11.
Quadros
,
W. R.
,
Ramaswami
,
K.
,
Prinz
,
F. B.
, and
Gurumoorthy
,
B.
,
2004
, “
LayTracks: A New Approach to Automated Geometry Adaptive Quadrilateral Mesh Generation Using Medial Axis Transform
,”
Int. J. Numer. Methods Eng.
,
61
(
2
), pp.
209
237
. 10.1002/nme.1063
12.
Gürsoy
,
H. N.
, and
Patrikalakis
,
N. M.
,
1992
, “
An Automatic Coarse and Fine Surface Mesh Generation Scheme Based on Medial Axis Transform: Part I Algorithms
,”
Eng. Comput.
,
8
(
3
), pp.
121
137
. 10.1007/BF01200364
13.
Kale
,
K. B.
, and
Gurumoorthy
,
B.
,
2013
, “
Profile Tolerance Verification for Free-Form Surfaces Using Medial Axis Transform
,”
12th CIRP Conference on Computer Aided Tolerancing
,
Huddersfield, UK
,
2012
,
10
, pp.
133
141
. 10.1016/j.procir.2013.08.023
14.
Kale
,
K. B.
, and
Gurumoorthy
,
B.
,
2011
, “
Medial Axis Transform for Tolerance Verification
,”
Comput.-Aided Des. Appl.
,
8
(
5
), pp.
747
758
. 10.3722/cadaps.2011.747-758
15.
Sharma
,
G. K.
, and
Gurumoorthy
,
B.
,
2017
, “
A Hybrid Approach to Define and Represent Material Distribution in Heterogeneous Objects
,”
Comput.-Aided Des. Appl.
,
14
(
1
), pp.
70
82
. 10.1080/16864360.2016.1199757
16.
Xing
,
H.
,
Yu
,
W.
, and
Zhang
,
J.
,
2009
, “3D Mesh Generation in Geocomputing,”
Advances in Geocomputing
,
Springer Berlin Heidelberg
, pp.
27
64
.
17.
Hollister
,
S. J.
,
2005
, “
Porous Scaffold Design for Tissue Engineering
,”
Nat. Mater.
,
4
(
7
), pp.
518
524
. 10.1038/nmat1421
18.
Sharma
,
G. K.
, and
Gurumoorthy
,
B.
,
2019
, “
Modelling Multiply Connected Heterogeneous Objects Using Mixed-Dimensional Material Reference Features
,”
J. Comput. Des. Eng.
,
6
(
3
), pp.
337
347
. 10.1016/j.jcde.2018.11.003
19.
Giblin
,
P.
, and
Kimia
,
B. B.
,
2004
, “
A Formal Classification of 3D Medial Axis Points and Their Local Geometry
,”
IEEE Trans Pattern Analysis Mach. Intelligence
,
26
(
2
), pp.
238
251
. 10.1109/TPAMI.2004.1262192
20.
Amenta
,
N.
,
Choi
,
S.
, and
Kolluri
,
R. K.
,
2001
, “
The Power Crust
,”
Proceedings of the Sixth ACM Symposium on Solid Modeling and Applications
,
New York, NY
,
ACM
, pp.
249
266
.
21.
Reddy
,
J. M.
, and
Turkiyyah
,
G. M.
,
1995
, “
Computation of 3D Skeletons Using a Generalised Delaunay Triangulation Technique
,”
Comput.-Aided Des.
,
27
(
9
), pp.
677
694
. 10.1016/0010-4485(94)00025-9
22.
Lam
,
L.
,
Lee
,
S.-W.
, and
Suen
,
C. Y.
,
1992
, “
Thinning Methodologies—A Comprehensive Survey
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
14
(
9
), pp.
869
885
. 10.1109/34.161346
23.
Elber
,
G.
, and
Kim
,
M.-S.
,
1998
, “
Bisector Curves of Planar Rational Curves
,”
Comput.-Aided Des.
,
30
(
14
), pp.
1089
1096
. 10.1016/S0010-4485(98)00065-7
24.
Ramanathan
,
M.
, and
Gurumoorthy
,
B.
,
2003
, “
Constructing Medial Axis Transform of Planar Domains With Curved Boundaries
,”
Comput.-Aided Des.
,
35
(
7
), pp.
619
632
. 10.1016/S0010-4485(02)00085-4
25.
Brandt
,
J. W.
,
1994
, “
Convergence and Continuity Criteria for Discrete Approximations of the Continuous Planar Skeleton
,”
CVGIP: Image Understanding
,
59
(
1
), pp.
116
124
. 10.1006/ciun.1994.1007
26.
Farouki
,
R. T.
, and
Ramamurthy
,
R.
,
1998
, “
Specified–Precision Computation of Curve/Curve Bisectors
,”
Int. J. Comput. Geom. Appl.
,
8
(
05n06
), pp.
599
617
. 10.1142/S0218195998000291
27.
Sherbrooke
,
E. C.
,
Patrikalakis
,
N. M.
, and
Brisson
,
E.
,
1996
, “
An Algorithm for the Medial Axis Transform of 3D Polyhedral Solids
,”
IEEE Trans. Visualisation Comput. Graphics
,
2
(
1
), pp.
44
61
. 10.1109/2945.489386
28.
Dorado
,
R.
,
2009
, “
Medial Axis of a Planar Region by Offset Self-Intersections
,”
Comput.-Aided Des.
,
41
(
12
), pp.
1050
1059
. 10.1016/j.cad.2009.08.005
29.
Dey
,
T. K.
, and
Zhao
,
W.
,
2004
, “
Approximating the Medial Axis From the Voronoi Diagram With a Convergence Guarantee
,”
Algorithmica
,
38
(
1
), pp.
179
200
. 10.1007/s00453-003-1049-y
30.
Chen
,
Z. C.
, and
Fu
,
Q.
,
2014
, “
An Efficient, Accurate Approach to Medial Axis Transforms of Pockets With Closed Free-Form Boundaries
,”
Eng. Comput.
,
30
(
1
), pp.
111
123
. 10.1007/s00366-012-0295-5
31.
Aichholzer
,
O.
,
Aigner
,
W.
,
Aurenhammer
,
F.
,
Hackl
,
T.
,
Jüttler
,
B.
, and
Rabl
,
M.
,
2009
, “
Medial Axis Computation for Planar Free–Form Shapes
,”
Comput.-Aided Des.
,
41
(
5
), pp.
339
349
. 10.1016/j.cad.2008.08.008
32.
Choi
,
H. I.
,
Choi
,
S. W.
, and
Moon
,
H. P.
,
1997
, “
Mathematical Theory of Medial Axis Transform
,”
Pacific J. Math.
,
181
(
1
), pp.
57
88
. 10.2140/pjm.1997.181.57
33.
Cao
,
L.
, and
Liu
,
J.
,
2008
, “
Computation of Medial Axis and Offset Curves of Curved Boundaries in Planar Domain
,”
Comput.-Aided Des.
,
40
(
4
), pp.
465
475
. 10.1016/j.cad.2008.01.002
34.
Du
,
H.
, and
Qin
,
H.
,
2004
, “
Medial Axis Extraction and Shape Manipulation of Solid Objects Using Parabolic PDEs
,”
Proceedings of the Ninth ACM Symposium on Solid Modeling and Applications
,
Aire-la-Ville, Switzerland
,
Eurographics Association
.
35.
Lee
,
D.-T.
,
1982
, “
Medial Axis Transformation of a Planar Shape
,”
IEEE Trans. Pattern Anal. Mach. Intelligence
,
4
(
4
), pp.
363
369
. 10.1109/TPAMI.1982.4767267
36.
Sheehy
,
D. J.
,
Armstrong
,
C. G.
, and
Robinson
,
D. J.
,
1995
, “
Computing the Medial Surface of a Solid From a Domain Delaunay Triangulation
,”
Proceedings of the Third ACM Symposium on Solid Modeling and Applications
,
ACM
.
37.
Goldak
,
J. A.
,
Yu
,
X.
,
Knight
,
A.
, and
Dong
,
L.
,
1991
, “
Constructing Discrete Medial Axis of 3D Objects
,”
Int. J. Comput. Geometry Appl.
,
1
(
03
), pp.
327
339
. 10.1142/S0218195991000220
38.
Turkiyyah
,
G. M.
,
Storti
,
D. W.
,
Ganter
,
M.
,
Chen
,
H.
, and
Vimawala
,
M.
,
1997
, “
An Accelerated Triangulation Method for Computing the Skeletons of Free-Form Solid Models
,”
Comput.-Aided Des.
,
29
(
1
), pp.
5
19
. 10.1016/S0010-4485(96)00036-X
39.
Etzion
,
M.
, and
Rappoport
,
A.
,
2002
, “
Computing Voronoi Skeletons of a 3-D Polyhedron by Space Subdivision
,”
Comput. Geom.
,
21
(
3
), pp.
87
120
. 10.1016/S0925-7721(01)00056-6
40.
Attali
,
D.
, and
Montanvert
,
A.
,
1997
, “
Computing and Simplifying 2D and 3D Continuous Skeletons
,”
Comput. Vision Image Understanding
,
67
(
3
), pp.
261
273
. 10.1006/cviu.1997.0536
41.
Miklos
,
B.
,
Giesen
,
J.
, and
Pauly
,
M.
,
2010
, “
Discrete Scale Axis Representations for 3D Geometry
,”
ACM Trans. Graphics (TOG)
,
29
(
4
), p.
101
. 10.1145/1778765.1778838
42.
Zhu
,
H.
,
Liu
,
Y.
,
Bai
,
J.
, and
Ye
,
X.
,
2015
, “
Constructive Generation of the Medial Axis for Solid Models
,”
Comput.-Aided Des.
,
62
, pp.
98
111
. 10.1016/j.cad.2014.11.003
43.
Yan
,
Y.
,
Letscher
,
D.
, and
Ju
,
T.
,
2018
, “
Voxel Cores: Efficient, Robust, and Provably Good Approximation of 3D Medial Axes
,”
ACM Trans. Graphics (TOG)
,
37
(
4
), pp.
1
13
.
44.
Au
,
C.
,
2013
, “
A Simple Algorithm for Medial Axis Transform Computation
,”
Eng. Comput.
,
29
(
2
), pp.
139
149
. 10.1007/s00366-011-0250-x
45.
Cheng
,
S. W.
,
Dey
,
T. K.
, and
Shewchuk
,
J.
,
2012
,
Delaunay Mesh Generation
,
CRC Press
,
Boca Raton, FL
.
46.
Prasad
,
L.
,
1997
, “
Morphological Analysis of Shapes
,”
CNLS Newsletter
,
139
(
1
), pp.
1997
1907
.
47.
Igarashi
,
T.
,
Matsuoka
,
S.
, and
Tanaka
,
H.
“Teddy: A Sketching Interface for 3D Freeform Design.” ACM SIGGRAPH 2006 Courses. 2006. 11-es.
48.
De Berg
,
M.
,
Cheong
,
O.
,
van Kreveld
,
M.
, and
Overmars
,
M.
,
2000
,
Computational Geometry
,
Springer Berlin Heidelberg
,
Heidelberg
.
49.
Hoffmann
,
C.
,
1993
,
Geometric and Solid Modeling
,
Morgan Kaufmann
,
San Mateo, CA.
51.
Neider
,
J.
,
Davis
,
T.
, and
Woo
,
M.
,
1993
, “
OpenGL Programming Guide
.”
478
.
You do not currently have access to this content.