Abstract

This paper presents a new process planning method for five-axis machining, which is particularly suitable for parts with complex features or weak structures. First, we represent the in-process workpiece as a voxel model. Facilitated by the voxel representation, a scalar field called subtraction field is then established between the blank surface and the part surface, whose value at any voxel identifies its removal sequence. This subtraction field helps identify a sequence of intermediate machining layers, which are always accessible to the tool and are free of self-intersection and the layer redundancy problem as suffered, respectively, by the traditional offset layering method and the morphing method. Iso-planar collision-free five-axis tool paths are then determined on the interface surfaces of these machining layers. In addition, to mitigate the deformation of the in-process workpiece and avoid potential dynamic problems such as chattering, we also propose a new machining strategy of alternating between the roughing and finishing operations, which is able to achieve a much higher stiffness of the in-process workpiece. Ample experiments in both computer simulation and physical cutting are performed, and the experimental results convincingly confirm the advantages of our method.

References

1.
Tang
,
T. D.
,
2014
, “
Algorithms for Collision Detection and Avoidance for Five-Axis NC Machining: A State of the Art Review
,”
Comput. Aided Des.
,
51
, pp.
1
17
. 10.1016/j.cad.2014.02.001
2.
Chen
,
L.
,
Hu
,
P.
,
Luo
,
M.
, and
Tang
,
K.
,
2018
, “
Optimal Interface Surface Determination for Multi-Axis Freeform Surface Machining With Both Roughing and Finishing
,”
Chin. J. Aeronaut.
,
31
(
2
), pp.
370
384
. 10.1016/j.cja.2017.07.004
3.
Chen
,
L.
,
Li
,
Y.
, and
Tang
,
K.
,
2018
, “
Variable-Depth Multi-Pass Tool Path Generation on Mesh Surfaces
,”
Int. J. Adv. Manuf. Technol.
,
95
(
5–8
), pp.
2169
2183
. 10.1007/s00170-017-1367-x
4.
Tao
,
S.
, and
Ting
,
K. L.
,
2001
, “
Unified Rough Cutting Tool Path Generation for Sculptured Surface Machining
,”
Int. J. Prod. Res.
,
39
(
13
), pp.
2973
2989
. 10.1080/00207540110052553
5.
Balasubramaniam
,
M.
,
Joshi
,
Y.
,
Engels
,
D.
,
Sarma
,
S.
, and
Shaikh
,
Z.
,
2001
, “
Tool Selection in Three-Axis Rough Machining
,”
Int. J. Prod. Res.
,
39
(
18
), pp.
4215
4238
. 10.1080/00207540110055389
6.
Hu
,
Y. N.
,
Tse
,
W. C.
,
Chen
,
Y. H.
, and
Zhou
,
Z. D.
,
1998
, “
Tool-Path Planning for Rough Machining of a Cavity by Layer-Shape Analysis
,”
Int. J. Adv. Manuf. Technol.
,
14
(
5
), pp.
321
329
. 10.1007/BF01178910
7.
Chuang
,
C. M.
, and
Yau
,
H. T.
,
2005
, “
A New Approach to z-Level Contour Machining of Triangulated Surface Models Using Fillet Endmills
,”
Comput. Aided Des.
,
37
(
10
), pp.
1039
1051
. 10.1016/j.cad.2004.10.005
8.
Xu
,
K.
, and
Tang
,
K.
,
2016
, “
An Energy Saving Approach for Rough Milling Tool Path Planning
,”
Comput. Aided Des. Appl.
,
13
(
2
), pp.
253
264
. 10.1080/16864360.2015.1084198
9.
Li
,
H.
,
Dong
,
Z.
, and
Vickers
,
G. W.
,
1994
, “
Optimal Toolpath Pattern Identification for Single Island, Sculptured Part Rough Machining Using Fuzzy Pattern Analysis
,”
Comput. Aided Des.
,
26
(
11
), pp.
787
795
. 10.1016/0010-4485(94)90092-2
10.
Zhu
,
J.
,
Tanaka
,
T.
, and
Saito
,
Y.
,
2007
, “
A Rough Cutting Model Generation Algorithm Based on Multi-Resolution Mesh for Sculptured Surface Machining
,”
J. Adv. Mech. Des. Syst. Manuf.
,
1
(
5
), pp.
628
639
. 10.1299/jamdsm.1.628
11.
Inui
,
M.
,
2003
, “
Fast Inverse Offset Computation Using Polygon Rendering Hardware
,”
Comput. Aided Des.
,
35
(
2
), pp.
191
201
. 10.1016/S0010-4485(02)00052-0
12.
Tang
,
K.
,
Cheng
,
C. C.
, and
Dayan
,
Y.
,
1995
, “
Offsetting Surface Boundaries and 3-Axis Gouge-Free Surface Machining
,”
Comput. Aided Des.
,
27
(
12
), pp.
915
927
. 10.1016/0010-4485(96)83775-4
13.
Takeuchi
,
Y.
,
Sakamoto
,
M.
,
Abe
,
Y.
,
Orita
,
R.
, and
Sata
,
T.
,
1989
, “
Development of a Personal CAD/CAM System for Mold Manufacture Based on Solid Modeling Techniques
,”
CIRP Ann.
,
38
(
1
), pp.
429
432
. 10.1016/S0007-8506(07)62739-5
14.
Lefebvre
,
P. P.
, and
Lauwers
,
B.
,
2005
, “
3D Morphing for Generating Intermediate Roughing Levels in Multi-Axis Machining
,”
Comput. Aided Des. Appl.
,
2
(
1–4
), pp.
115
123
. 10.1080/16864360.2005.10738359
15.
Lauwers
,
B.
, and
Lefebvre
,
P. P.
,
2006
, “
Five-Axis Rough Milling Strategies for Complex Shaped Cavities Based on Morphing Technology
,”
CIRP Ann.
,
55
(
1
), pp.
59
62
. 10.1016/S0007-8506(07)60366-7
16.
Huang
,
B.
,
2013
, “
A Unified Approach for Integrated Computer-Aided Design and Manufacturing
,”
Doctoral dissertation
,
UCLA
,
Los Angeles, CA
.
17.
Gan
,
W. F.
,
Fu
,
J. Z.
,
Shen
,
H. Y.
, and
Lin
,
Z. W.
,
2014
, “
A Morphing Machining Strategy for Artificial Bone
,”
J. Zhejiang Univ. Sci. A
,
15
(
3
), pp.
157
171
. 10.1631/jzus.A1300274
18.
Narayanaswami
,
R.
, and
Pang
,
J.
,
2003
, “
Multiresolution Analysis as an Approach for Tool Path Planning in NC Machining
,”
Comput. Aided Des.
,
35
(
2
), pp.
167
178
. 10.1016/S0010-4485(02)00050-7
19.
Young
,
H. T.
,
Chuang
,
L. C.
,
Gerschwiler
,
K.
, and
Kamps
,
S.
,
2004
, “
A Five-Axis Rough Machining Approach for a Centrifugal Impeller
,”
Int. J. Adv. Manuf. Technol.
,
23
(
3–4
), pp.
233
239
. 10.1007/s00170-003-1677-z
20.
Luo
,
M.
,
Hah
,
C.
, and
Hafeez
,
H. M.
,
2019
, “
Four-Axis Trochoidal Toolpath Planning for Rough Milling of Aero-Engine Blisks
,”
Chin. J. Aeronaut.
,
32
(
8
), pp.
2009
2016
. 10.1016/j.cja.2018.09.001
21.
Hu
,
Y. N.
, and
Chen
,
Y. H.
,
1999
, “
Implementation of a Robot System for Sculptured Surface Cutting. Part 1. Rough Machining
,”
Int. J. Adv. Manuf. Technol.
,
15
(
9
), pp.
624
629
. 10.1007/s001700050111
22.
Choi
,
B. K.
,
Kim
,
D. H.
, and
Jerard
,
R. B.
,
1997
, “
C-Space Approach to Tool-Path Generation for Die and Mould Machining
,”
Comput. Aided Des.
,
29
(
9
), pp.
657
669
. 10.1016/S0010-4485(97)00012-2
23.
Choi
,
B. K.
,
1998
,
International Workshop on Geometric Modelling
,
F.
Kimura
ed.,
Springer
,
Boston, MA
, pp.
85
97
.
24.
Joy
,
J.
, and
Feng
,
H. Y.
,
2017
, “
Frame-Sliced Voxel Representation: An Accurate and Memory-Efficient Modeling Method for Workpiece Geometry in Machining Simulation
,”
Comput. Aided Des.
,
88
, pp.
1
13
. 10.1016/j.cad.2017.03.006
25.
Yu
,
J.
,
Lynn
,
R.
,
Tucker
,
T.
,
Saldana
,
C.
, and
Kurfess
,
T.
,
2017
, “
Model-Free Subtractive Manufacturing From Computed Tomography Data
,”
Manuf. Lett.
,
13
, pp.
44
47
. 10.1016/j.mfglet.2017.06.004
26.
Zhang
,
L.
,
Feng
,
J.
,
Wang
,
Y.
, and
Chen
,
M.
,
2009
, “
Feedrate Scheduling Strategy for Free-Form Surface Machining Through an Integrated Geometric and Mechanistic Model
,”
Int. J. Adv. Manuf. Technol.
,
40
(
11–12
), pp.
1191
1201
. 10.1007/s00170-008-1424-6
27.
Schulze
,
V.
,
Spomer
,
W.
, and
Becke
,
C.
,
2012
, “
A Voxel-Based Kinematic Simulation Model for Force Analyses of Complex Milling Operations Such as Wobble Milling
,”
Prod. Eng.
,
6
(
1
), pp.
1
9
. 10.1007/s11740-011-0348-4
28.
Peng
,
J.
,
Guo
,
R.
,
Zhang
,
S.
,
Shao
,
Z.
, and
Ding
,
W.
,
2009
, “
Research on Simulation of Multi-Axis Machining Based on Three Dimensions Grid Representation
,”
2009 International Conference on Information and Automation
,
Zhuhai, Macau, China
,
June 22–24
, pp.
1494
1499
.
29.
Dai
,
C.
,
Wang
,
C. C.
,
Wu
,
C.
,
Lefebvre
,
S.
,
Fang
,
G.
, and
Liu
,
Y. J.
,
2018
, “
Support-Free Volume Printing by Multi-Axis Motion
,”
ACM Trans. Graph.
,
37
(
4
), pp.
1
14
. 10.1145/3197517.3201342
30.
Tarbutton
,
J.
,
Kurfess
,
T. R.
,
Tucker
,
T.
, and
Konobrytskyi
,
D.
,
2013
, “
Gouge-Free Voxel-Based Machining for Parallel Processors
,”
Int. J. Adv. Manuf. Technol.
,
69
(
9–12
), pp.
1941
1953
. 10.1007/s00170-013-5148-x
31.
Collins
,
J. S.
,
2018
, “
Digital Twin Volume Registration for Voxel-Based Closed-Loop Machining Systems
,”
Doctoral dissertation
,
Georgia Institute of Technology
,
Atlanta, GA
.
32.
Ameur
,
A.
,
2017
, “
Voxel-Based Tool Sequence Optimization for 5-Axis Machining Using High Performance Computing
,”
Doctoral dissertation
,
Georgia Institute of Technology
,
Atlanta, GA
.
33.
Lynn
,
R.
,
Dinar
,
M.
,
Huang
,
N.
,
Collins
,
J.
,
Yu
,
J.
,
Greer
,
C.
,
Tucker
,
T.
, and
Kurfess
,
T.
,
2018
, “
Direct Digital Subtractive Manufacturing of a Functional Assembly Using Voxel-Based Models
,”
ASME J. Manuf. Sci. Eng.
,
140
(
2
), p.
021006
. 10.1115/1.4037631
34.
Lynn
,
R.
,
Contis
,
D.
,
Hossain
,
M.
,
Huang
,
N.
,
Tucker
,
T.
, and
Kurfess
,
T.
,
2017
, “
Voxel Model Surface Offsetting for Computer-Aided Manufacturing Using Virtualized High-Performance Computing
,”
J. Manuf. Syst.
,
43
, pp.
296
304
. 10.1016/j.jmsy.2016.12.005
35.
Kurfess
,
T.
,
Lynn
,
R.
,
Saleeby
,
K.
,
Tucker
,
T.
, and
Saldana
,
C.
,
2018
, “
Multi-Axis Voxel-Based CNC Machining of Centrifugal Compressor Assemblies
,”
American Helicopter Society Forum 74
,
Phoenix, AZ
,
May 14–17
, pp.
1
10
.
36.
Yan
,
Q.
,
Luo
,
M.
, and
Tang
,
K.
,
2018
, “
Multi-Axis Variable Depth-of-Cut Machining of Thin-Walled Workpieces Based on the Workpiece Deflection Constraint
,”
Comput. Aided Des.
,
100
, pp.
14
29
. 10.1016/j.cad.2018.02.007
37.
Ratchev
,
S.
,
Liu
,
S.
, and
Becker
,
A. A.
,
2005
, “
Error Compensation Strategy in Milling Flexible Thin-Wall Parts
,”
J. Mater. Process. Technol.
,
162
, pp.
673
681
. 10.1016/j.jmatprotec.2005.02.192
38.
Chen
,
W.
,
Xue
,
J.
,
Tang
,
D.
,
Chen
,
H.
, and
Qu
,
S.
,
2009
, “
Deformation Prediction and Error Compensation in Multilayer Milling Processes for Thin-Walled Parts
,”
Int. J. Mach. Tools Manuf.
,
49
(
11
), pp.
859
864
. 10.1016/j.ijmachtools.2009.05.006
39.
Gao
,
Y. Y.
,
Ma
,
J. W.
,
Jia
,
Z. Y.
,
Wang
,
F. J.
,
Si
,
L. K.
, and
Song
,
D. N.
,
2016
, “
Tool Path Planning and Machining Deformation Compensation in High-Speed Milling for Difficult-to-Machine Material Thin-Walled Parts With Curved Surface
,”
Int. J. Adv. Manuf. Technol.
,
84
(
9–12
), pp.
1757
1767
. 10.1007/s00170-015-7825-4
40.
Weck
,
M.
,
Altintas
,
Y.
, and
Beer
,
C.
,
1994
, “
CAD Assisted Chatter-Free NC Tool Path Generation in Milling
,”
Int. J. Mach. Tools Manuf.
,
34
(
6
), pp.
879
891
. 10.1016/0890-6955(94)90066-3
41.
Sun
,
C.
, and
Altintas
,
Y.
,
2016
, “
Chatter Free Tool Orientations in 5-Axis Ball-End Milling
,”
Int. J. Mach. Tools Manuf.
,
106
, pp.
89
97
. 10.1016/j.ijmachtools.2016.04.007
42.
Tunc
,
L. T.
, and
Stoddart
,
D.
,
2017
, “
Tool Path Pattern and Feed Direction Selection in Robotic Milling for Increased Chatter-Free Material Removal Rate
,”
Int. J. Adv. Manuf. Technol.
,
89
(
9–12
), pp.
2907
2918
. 10.1007/s00170-016-9896-2
43.
Wang
,
J.
,
Luo
,
M.
,
Xu
,
K.
, and
Tang
,
K.
,
2019
, “
Generation of Tool-Life-Prolonging and Chatter-Free Efficient Toolpath for Five-Axis Milling of Freeform Surfaces
,”
ASME J. Manuf. Sci. Eng.
,
141
(
3
), p.
031001
. https://doi.org/10.1115/1.4041949
44.
Lee
,
S. G.
,
Kim
,
H. C.
, and
Yang
,
M. Y.
,
2008
, “
Mesh-Based Tool Path Generation for Constant Scallop-Height Machining
,”
Int. J. Adv. Manuf. Technol.
,
37
(
1–2
), pp.
15
22
. 10.1007/s00170-007-0943-x
45.
Li
,
Y.
,
Zeng
,
L.
,
Tang
,
K.
, and
Xie
,
C.
,
2020
, “
Orientation-Point Relation Based Inspection Path Planning Method for 5-Axis OMI System
,”
Robot. Comput. Integr. Manuf.
,
61
, p.
101827
. 10.1016/j.rcim.2019.101827
46.
Barber
,
C. B.
,
Dobkin
,
D. P.
, and
Huhdanpaa
,
H.
,
1996
, “
The Quickhull Algorithm for Convex Hulls
,”
ACM Trans. Math. Softw.
,
22
(
4
), pp.
469
483
. 10.1145/235815.235821
You do not currently have access to this content.