Abstract

This paper presents a new computational method based on the feasible-set method (Berndt, Kucharik, and Shashkov, 2010, “Using the Feasible Set Method for Rezoning in ALE,” Procedia Comput., 1(1), pp. 1879–1886 and Vachal, Garimella, and Shashkov, 2004, “Untangling of 2D Meshes in ALE Simulations,” J. Comput. Phys., 196, pp. 627–644) for removing inverted elements in surface and volume meshes. The proposed method calculates a region for each node called a “feasible set” in which the node can reside without creating an inverted element. The node is then relocated within the region so that the number of inverted elements is reduced. Unlike the original feasible-set method, it is applicable to nonplanar surface meshes, volume meshes, and also has a step for recovering a feasible set when the set is empty. While various useful mesh optimization techniques have been proposed over several decades, many of them do not work well if the initial mesh has inverted elements. Additionally, some mesh optimizations create new inverted elements when the mesh topology is highly irregular. The goal of the proposed method is to remove mesh inversion without creating a new inverted element. The proposed method is useful for preconditioning for conventional smoothing techniques, which require that the initial mesh be inversion free. It is also useful for correcting inverted elements created by conventional smoothing techniques. The effectiveness of the improved method has been verified by applying it to the facet-repair and the boundary-layer generation problems.

References

1.
Berndt
,
M.
,
Kucharik
,
M.
, and
Shashkov
,
M. J.
,
2010
, “
Using the Feasible Set Method for Rezoning in ALE
,”
Procedia Comput. Sci.
,
1
(
1
), pp.
1885
1892
. 10.1016/j.procs.2010.04.211
2.
Vachal
,
P.
,
Garimella
,
R. V.
, and
Shashkov
,
M. J.
,
2004
, “
Untangling of 2D Meshes in ALE Simulations
,”
J. Comput. Phys.
,
196
(
2
), pp.
627
644
. 10.1016/j.jcp.2003.11.011
3.
Danczyk
,
J.
, and
Krishnan
,
S.
,
2012
, “
A Methodology for FEA Over Tangled Meshes
,”
21st International Meshing Roundtable
,
San Jose, CA
,
Oct. 7–10
.
4.
Verma
,
C. S.
, and
Suresh
,
K.
,
2014
, “
Towards FEA Over Tangled Quads
,”
Procedia Eng.
,
82
, pp.
187
199
. 10.1016/j.proeng.2014.10.383
5.
Irving
,
G.
,
Teran
,
J.
, and
Fedkiw
,
R.
,
2004
, “
Invertible Finite Elements for Robust Simulation of Large Deformation
,”
Eurographics/ACM SIGGRAPH Symposium on Computer Animation
,
Grenoble, France
,
Aug. 27–29
.
6.
Knupp
,
P.
,
1999
, “
Matrix Norms and the Condition Number: A General Framework to Improve Mesh Quality via Node-Movement
,”
8th International Meshing Roundtable
,
Lake Tahoe, CA
,
Oct. 10–13
.
7.
Knupp
,
P.
,
2001
, “
Hexahedral and Tetrahedral Mesh Untangling
,”
Eng. Comput.
,
17
(
3
), pp.
261
268
. 10.1007/s003660170006
8.
Freitag
,
L. A.
,
1999
, “
Tetrahedral Element Shape Optimization via the Jacobian Determinant and Condition Number
,”
8th International Meshing Roundtable
,
Lake Tahoe, CA
,
Oct. 10–13
.
9.
Chen
,
Z.
,
Tristano
,
J. R.
, and
Kwok
,
W.
,
2003
, “
Combined Laplacian and Optimization-Based Smoothing for Quadratic Mixed Surface Meshes
,”
12th International Meshing Roundtable
,
Santa Fe, NM
,
Sept. 14–17
.
10.
Freitag
,
L. A.
, and
Knupp
,
P. M.
,
2002
, “
Tetrahedral Mesh Improvement via Optimization of the Element Condition Number
,”
Int. J. Numer. Methods Eng.
,
53
(
6
), pp.
1377
1391
. 10.1002/nme.341
11.
Knupp
,
P. M.
,
2000
, “
Achieving Finite Element Mesh Quality via Optimization of the Jacobian Matrix Norm and Associated Quantities. Part II A Framework for Volume Mesh Optimization and the Condition Number of the Jacobian Matrix
,”
Int. J. Numer. Methods Eng.
,
48
(
8
), pp.
1165
1185
. 10.1002/(SICI)1097-0207(20000720)48:8<1165::AID-NME940>3.0.CO;2-Y
12.
Shashkov
,
M.
, and
Knupp
,
P.
,
2001
, “
Optimization-Based Reference-Matrix Rezone Strategies for Arbitrary Lagrangian-Eulerian Methods on Unstructured Meshes
,”
10th International Meshing Roundtable
,
Newport Beach, CA
,
Oct. 7–10
.
13.
Vartziotis
,
D.
, and
Himpel
,
B.
,
2013
, “
Efficient and Global Optimization-Based Smoothing Methods for Mixed-Volume Meshes
,”
22nd International Meshing Roundtable
,
Orlando, FL
,
Oct. 13–16
.
14.
Wilson
,
T. J.
,
Sarrate
,
J.
,
Roca
,
X.
,
Montenegro
,
R.
, and
Escobar
,
J. M.
,
2012
, “
Untangling and Smoothing of Quadrilateral and Hexahedral Meshes
,”
Eighth International Conference on Engineering Computational Technology
,
Dubrovnik, Croatia
,
Sept. 4–7
.
15.
Escobar
,
J. M.
,
Rodríguez
,
E.
,
Montero
,
G.
, and
González-Yuste
,
J. M.
,
2015
, “
Simultaneous Untangling and Smoothing of Tetrahedral Meshes
,”
Comp. Meth. Appl. Mech. Eng.
,
192
(
25
), pp.
2775
2787
.
16.
Freitag
,
L. A.
, and
Plassman
,
P. E.
,
2001
, “
Local Optimization-Based Untangling Algorithms for Quadrilateral Meshes
,”
10th International Meshing Roundtable
,
Newport Beach, CA
,
Oct. 7–10
.
17.
Kim
,
J.
,
Panitanarak
,
T.
, and
Shontz
,
S. M.
,
2013
, “
A Multiobjective Mesh Optimization Framework for Mesh Quality Improvement and Mesh Untangling
,”
Int. J. Numer. Methods Eng.
,
94
(
1
), pp.
20
42
. 10.1002/nme.4431
18.
Sastry
,
S. P.
,
Shontz
,
S. M.
, and
Vavasis
,
S. A.
,
2014
, “
A Log-Barrier Method for Mesh Quality Improvement
,”
Eng. Comput.
,
30
(
3
), pp.
315
329
. 10.1007/s00366-012-0294-6
19.
Sastry
,
S. P.
, and
Shontz
,
S. M.
,
2014
, “
A Parallel Log-Barrier Method for Mesh Quality Improvement and Untangling
,”
Eng. Comput.
,
30
(
4
), pp.
503
515
. 10.1007/s00366-014-0362-1
20.
Toulorge
,
T.
,
Geuzaine
,
C.
,
Remacle
,
J.-F.
, and
Lambrechts
,
J.
,
2013
, “
Robust Untangling of Curvilinear Meshes
,”
J. Comput. Phys.
,
254
(
1
), pp.
8
26
. 10.1016/j.jcp.2013.07.022
21.
Verhetsel
,
K.
,
Pellerin
,
J.
, and
Remacle
,
J.-F.
,
2018
, “
A 44-Element Mesh of Schneiders’ Pyramid Bounding the Difficulty of Hex-Meshing Problems
,”
27th International Meshing Roundtable
,
Albuquerque, NM
,
Oct. 1–5
.
22.
Schneiders
,
R.
,
1996
, “
A Grid-Based Algorithm for the Generation of Hexahedral Element Meshes
,”
Eng. Comput.
,
12
(
3–4
), pp.
168
177
. 10.1007/BF01198732
23.
Sastry
,
S. P.
, and
Shontz
,
S. M.
,
2012
, “
Performance Characterization of Nonlinear Optimization Methods for Mesh Quality Improvement
,”
Eng. Comput.
,
28
(
3
), pp.
269
286
. 10.1007/s00366-011-0227-9
24.
Diachin
,
L. F.
,
Knupp
,
P.
,
Munson
,
T.
, and
Shontz
,
S.
,
2006
, “
A Comparison of Two Optimization Methods for Mesh Quality Improvement
,”
Eng. Comput.
,
22
(
2
), pp.
61
74
. 10.1007/s00366-006-0015-0
25.
Zhou
,
T.
, and
Shimada
,
K.
,
2000
, “
An Angle-Based Approach to Two-Dimensional Mesh Smoothing
,”
9th International Meshing Roundtable
,
New Orleans, LA
,
Oct. 2–5
.
26.
Clark
,
B.
,
Ray
,
N.
, and
Jiao
,
X.
,
2012
, “
Surface Mesh Optimization, Adaptation, and Untangling with High-Order Accuracy
,”
21st International Meshing Roundtable
,
San Jose, CA
,
Oct. 7–10
.
27.
Bhowmick
,
S.
, and
Shontz
,
S. M.
,
2010
, “
Towards High-Quality Untangled Meshes via a Force-Directed Graph Embedding Approach
,”
Procedia Comput. Sci.
,
1
(
1
), pp.
357
366
. 10.1016/j.procs.2010.04.039
28.
Vidal
,
V.
,
Wolf
,
C.
, and
Dupont
,
F.
,
2012
, “
Combinatorial Mesh Optimization
,”
Visual Comput.
,
28
(
5
), pp.
511
525
. 10.1007/s00371-011-0649-9
29.
Livesu
,
M.
,
Sheffer
,
A.
,
Vining
,
N.
, and
Tarini
,
M.
,
2015
, “
Practical Hex-Mesh Optimization via Edge-Cone Rectification
,”
ACM Trans. Graph.
,
34
(
4
), pp.
1
11
. https://doi.org/10.1145/2766905
30.
Fu
,
X.-M.
, and
Liu
,
Y.
,
2016
, “
Computing Inversion-Free Mappings by Simplex Assembly
,”
ACM Trans. Graph.
,
35
(
6
), pp.
1
12
. 10.1145/2980179.2980231
31.
Aigerman
,
N.
, and
Lipman
,
Y.
,
2013
, “
Injective and Bounded Distortion Mappings in 3D
,”
ACM Trans. Graph.
,
32
(
4
), pp.
1
14
. 10.1145/2461912.2461931
32.
Xu
,
K.
,
Gao
,
X.
, and
Chen
,
G.
,
2018
, “
Hexahedral Mesh Quality Improvement via Edge-Angle Optimization
,”
Comput. Graph.
,
70
, pp.
17
27
. 10.1016/j.cag.2017.07.002
33.
Yamakawa
,
S.
, and
Shimada
,
K.
,
2002
, “
HEXHOOP: Modular Templates for Converting a Hex-Dominant Mesh to an All-Hex Mesh
,”
Eng. Comput.
,
18
(
3
), pp.
211
228
. 10.1007/s003660200019
34.
Yamakawa
,
S.
, and
Shimada
,
K.
,
2010
, “
88-Element Solution to Schneiders’ Pyramid Hex-Meshing Problem
,”
Int. J. Numer. Meth. Bio. Eng.
,
26
(
12
), pp.
1700
1712
. 10.1002/cnm.1256
35.
Xiang
,
Shang
, and
Liu
,
Jianfei
,
2018
,
A 36-Element Solution To Schneiders' Pyramid Hex-Meshing Problem And a Parity-Changing Template For Hex-Mesh Revision
, https://arxiv.org/ftp/arxiv/papers/1807/1807.09415.pdf.
36.
Lee
,
D. T.
, and
Preparata
,
F. P.
,
1979
, “
An Optimal Algorithm for Finding the Kernel of a Polygon
,”
J. ACM
,
26
(
3
), pp.
415
421
. 10.1145/322139.322142
You do not currently have access to this content.