Abstract

Dynamic performance as one of the important properties of the parallel mechanism cannot be ignored, which is usually illustrated through dynamic performance analysis with the aid of index. Therefore, to develop reasonable dynamic performance indices is of great theoretical and practical significance for the parallel mechanism. In this paper, the above issues are discussed by taking the parallel mechanism designed by our research group as a study object. First, on the basis of considering the driving motor, kinematics dexterity and dynamic dexterity based on the global kinematics condition index and the global dynamic condition index are analyzed, respectively, in the workspace. Second, a novel diagonally dominant index (DDI) is presented in terms of the equivalent inertia parameter in joint space, and the proposed approach gives full consideration to minimize the inter-chain coupling effects. Furthermore, the parallel mechanism is optimized by means of taking the volume of the workspace, the global kinematics condition index, the global dynamic condition index, and the diagonally dominant index as objective functions. The optimization result shows that the larger workspace, higher dexterity, and smaller DDI are obtained to further improve the work capability and dynamic property of the mechanism. Finally, a real and novel 8-SPU (spherical pair, prismatic pair, and universal pair) parallel walking mechanism is manufactured in terms of the optimized architecture parameters.

References

1.
Stewart
,
D.
,
1965
, “
A Platform With Six Degrees of Freedom
,”
Proc. Inst. Mech. Eng.
,
180
(
1
), pp.
371
386
.
2.
Merlet
,
J. P.
,
2006
,
Parallel Robots (Solid Mechanics and Its Applications)
, Vol.
128
,
Springer-Verlag
,
Berlin Heidelberg
, pp.
2091
2127
.
3.
Kong
,
X.
,
Gosselin
,
C. M.
, and
Richard
,
P. L.
,
2007
,
Type Synthesis of Parallel Mechanisms With Multiple Operation Modes. Parallel Kinematics
,
Springer
,
Berlin Heidelberg
.
4.
Mahboubkhah
,
M.
,
Nategh
,
M. J.
, and
Khadem
,
S. E.
,
2009
, “
A Comprehensive Study on the Free Vibration of Machine Tools’ Hexapod Table
,”
Int. J. Adv. Manuf. Technol.
,
40
(
11–12
), pp.
1239
1251
. 10.1007/s00170-008-1433-5
5.
Yang
,
J.
,
Xu
,
Z.
,
Wu
,
Q.
,
Zhu
,
M.
,
He
,
S.
, and
Qin
,
C.
,
2016
, “
Dynamic Modeling and Control of a 6-DOF Micro-Vibration Simulator
,”
Mech. Mach. Theory
,
104
, pp.
350
369
. 10.1016/j.mechmachtheory.2016.06.011
6.
Elbadawy A
,
A.
, and
Shehata M
,
M. G.
,
2015
, “
Anti-Sway Control of Marine Cranes Under the Disturbance of a Parallel Manipulator
,”
Nonlinear Dyn.
,
82
(
1–2
), pp.
415
434
. 10.1007/s11071-015-2165-3
7.
Pierrot
,
F.
,
Nabat
,
V.
,
Company
,
O.
,
Krut
,
S.
, and
Poignet
,
P.
,
2009
, “
Optimal Design of a 4-DOF Parallel Manipulator: From Academia to Industry
,”
IEEE Trans. Rob.
,
25
(
2
), pp.
213
224
. 10.1109/TRO.2008.2011412
8.
Yoon
,
J.
, and
Ryu
,
J.
,
2005
, “
A new Family of Hybrid 4-DOF Parallel Mechanisms With Two Platforms and Its Application to a Footpad Device
,”
J. Rob. Syst.
,
22
(
5
), pp.
287
298
. 10.1002/rob.20065
9.
Ota
,
Y.
,
Yoneda
,
K.
,
Ito
,
F.
,
Hirose
,
S.
, and
Inagaki
,
Y.
,
2001
, “
Design and Control of 6-DOF Mechanism for Twin-Frame Mobile Robot
,”
Auton. Robots
,
10
(
3
), pp.
297
316
. 10.1023/A:1011287810340
10.
Park
,
K.-W.
,
Kim
,
T.-S.
,
Kim
,
C.-H.
, and
Lee
,
M.-K.
,
2008
, “
Design of a Four Legged Parallel Walking Robot to Go Through a Narrow Hole
,”
IFAC Proc. Volumes
,
41
(
2
), pp.
3004
3008
.
11.
Pan
,
Y.
, and
Gao
,
F.
,
2017
, “
Position Model Computational Complexity of Walking Robot With Different Parallel Leg Mechanism Topology Patterns
,”
Mech. Mach. Theory
,
107
, pp.
324
337
. 10.1016/j.mechmachtheory.2016.09.016
12.
Birglen
,
L.
,
Laliberté
,
T.
, and
Gosselin
,
C. M.
,
2008
,
Underactuated Robotic Hands
,
Springer
,
New York
, pp.
1
2
.
13.
Birglen
,
L.
, and
Gosselin
,
C.
,
2019
, “
Underactuated Robotics: A Review
,”
Int. J. Adv. Rob. Syst.
,
16
(
4
), pp.
1
29
. 10.1177/1729881419862164
14.
Sun
,
T.
, and
Lian
,
B.
,
2018
, “
Stiffness and Mass Optimization of Parallel Kinematic Machine
,”
Mech. Mach. Theory
,
120
, pp.
73
88
. 10.1016/j.mechmachtheory.2017.09.014
15.
Qi
,
Y.
,
Sun
,
T.
, and
Song
,
Y.
,
2018
, “
Multi-Objective Optimization of Parallel Tracking Mechanism Considering Parameter Uncertainty
,”
ASME Trans. J. Mech. Rob.
,
10
(
4
), p.
041006
(12 pages). 10.1115/1.4039771
16.
Lian
,
B.
,
Wang
,
X.
, and
Wang
,
L.
,
2019
, “
Static and Dynamic Optimization of a Pose Adjusting Mechanism Considering Parameter Changes During Construction
,”
Rob. Comput. Integr. Manuf.
,
59
, pp.
267
277
. 10.1016/j.rcim.2019.04.008
17.
Chen
,
G.
,
Yu
,
W.
,
Li
,
Q.
, and
Wang
,
H.
,
2017
, “
Dynamic Modeling and Performance Analysis of the 3-PRRU 1T2R Parallel Manipulator Without Parasitic Motion
,”
Nonlinear Dyn.
90
(
1
), pp.
339
353
.
18.
Yao
,
J.
,
Gu
,
W.
,
Feng
,
Z.
,
Chen
,
L.
,
Xu
,
Y.
, and
Zhao
,
Y.
,
2017
, “
Dynamic Analysis and Driving Force Optimization of a 5-DOF Parallel Manipulator With Redundant Actuation
,”
Rob. Comput. Integr. Manuf.
,
48
, pp.
51
58
. 10.1016/j.rcim.2017.02.006
19.
Jiao
,
M.
,
Shao Z
,
F.
,
Guan
,
L.
,
Xie
,
F.
, and
Tang
,
X.
,
2017
, “
Dynamic Performance Analysis of the X4 High-Speed Pick-and-Place Parallel Robot
,”
Rob. Comput. Integr. Manuf.
,
46
(
C
), pp.
48
57
.
20.
Rezania
,
V.
, and
Ebrahimi
,
S.
,
2017
, “
Dexterity Characterization of the RPR Parallel Manipulator Based on the Local and Global Condition Indices
,”
J. Mech. Sci. Technol.
,
31
(
1
), pp.
335
344
. 10.1007/s12206-016-1237-8
21.
Brinker
,
J.
,
Corves
,
B.
, and
Takeda
,
Y.
,
2018
, “
Kinematic Performance Evaluation of High-Speed Delta Parallel Robots Based on Motion/Force Transmission Indices
,”
Mech. Mach. Theory
,
125
, pp.
111
125
. S0094114X17314507
22.
Park
,
F. C.
, and
Kim
,
J. W.
,
1998
, “
Manipulability of Closed Kinematic Chains
,”
ASME J. Mech. Design
,
120
(
4
), pp.
542
548
. 10.1115/1.2829312
23.
Liu X
,
J.
,
Wang Q
,
M.
, and
Wang
,
J.
,
2005
, “
Kinematics, Dynamics and Dimensional Synthesis of a Novel 2-DOF Translational Manipulator
,”
J. Intell. Rob. Syst.
,
41
(
4
), pp.
205
224
. 10.1007/s10846-005-3507-z
24.
Chiacchio
,
P.
,
Bouffard-Vercelli
,
Y.
, and
Pierrot
,
F.
,
1997
, “
Force Polytope and Force Ellipsoid for Redundant Manipulators
,”
J. Rob. Syst.
,
14
(
8
), pp.
613
620
. 10.1002/(SICI)1097-4563(199708)14:8<613::AID-ROB3>3.0.CO;2-P
25.
Chiacchio
,
P.
,
2001
, “
A new Dynamic Manipulability Ellipsoid for Redundant Manipulators
,”
Robotica
,
18
(
7
), pp.
381
387
.
26.
Wu
,
Y. N.
, and
Gosselin
,
C. M.
,
2004
, “
Synthesis of Reactionless Spatial 3-dof and 6-dof Mechanisms Without Separate Counter-Rotations
,”
Int. J. Rob. Res.
,
23
(
6
), pp.
625
642
. 10.1177/0278364904044400
27.
Wu
,
Y.
, and
Gosselin
,
C.
,
2005
, “
Design of Reactionless 3-DOF and 6-DOF Parallel Manipulators Using Parallelepiped Mechanisms
,”
IEEE Trans. Rob.
,
21
(
5
), pp.
821
833
. 10.1109/TRO.2005.847573
28.
Codourey
,
A.
,
2002
, “
Dynamic Modelling and Mass Matrix Evaluation of the DELTA Parallel Robot for Axes Decoupling Control
,”
IEEE/RSJ International Conference on Intelligent Robots & Systems
,
Osaka, Japan
,
Nov. 8
,
IEEE
,
New York
.
29.
Yao
,
Y.
,
Fu
,
S.
, and
Han
,
L.
,
2008
, “
Block Diagonal Dominance Analysis and Judgment of Stewart Platform’s Joint–Space Inertia Matrix
,”
Chin. J. Mech. Eng.
,
44
(
6
), pp.
101
106
. 10.3901/JME.2008.06.101
30.
Shao Z
,
F.
,
Tang
,
X.
,
Chen
,
X.
, and
Wang
,
L.
,
2012
, “
Research on the Inertia Matching of the Stewart Parallel Manipulator
,”
Rob. Comput. Integr. Manuf.
,
28
(
6
), pp.
649
659
. 10.1016/j.rcim.2012.04.001
31.
Jingfeng
,
H.
,
Zhengmao
,
Y.
,
Hongzhou
,
J.
,
Dacheng
,
C.
, and
Junwei
,
H.
,
2006
, “
Coupling Analysis Based on Joint-Space Model of Parallel Robot
,”
Chin. J. Mech. Eng.
,
42
(
6
), pp.
161
165
. 10.3901/JME.2006.06.161
32.
Wan X
,
J.
, and
Zhang
,
H.
,
2018
, “
Optimization Design of a Walkable Fixture Mechanism
,”
ASME J. Manuf. Sci. Eng.
,
140
(
8
), p.
081002
. 10.1115/1.4039856
33.
Wan X
,
J.
,
Li
,
Q.
, and
Wang
,
K.
,
2017
, “
Dimensional Synthesis of a Robotized Cell of Support Fixture
,”
Rob. Comput. Integr. Manuf.
,
48
, pp.
80
92
. 10.1016/j.rcim.2017.03.001
34.
Kelaiaia
,
R.
,
Zaatri
,
A.
, and
Company
,
O.
,
2012
, “
Multi-Objective Optimization of 6-dof UPS Parallel Manipulators
,”
Adv. Rob.
,
26
(
16
), pp.
1885
1913
. 10.1080/01691864.2012.703168
35.
Lou
,
Y.
,
Liu
,
G.
, and
Li
,
Z.
,
2008
, “
Randomized Optimal Design of Parallel Manipulators
,”
IEEE Trans. Autom. Sci. Eng.
,
5
(
2
), pp.
223
233
. 10.1109/TASE.2007.909446
36.
Carretero
,
J. A.
,
Nahon
,
M. A.
, and
Podhorodeski
,
R. P.
,
2000
, “
Workspace Analysis and Optimization Novel 3-DOF Parallel Manipulator
,”
Int. J. Robot. Autom.
,
15
, pp.
178
188
.
37.
Huang
,
T.
,
Whitehouse
,
D. J.
, and
Wang
,
J.
,
1998
, “
The Local Dexterity, Optimal Architecture and Design Criteria of Parallel Machine Tools
,”
CIRP Ann. Manuf. Technol.
,
47
(
1
), pp.
346
350
. 10.1016/S0007-8506(07)62848-0
38.
Angeles
,
J.
,
2007
, “
Fundamentals of Robotic Mechanical Systems
,”
Mech. Eng.
,
30
(
2
), p.
98
.
39.
Rao
,
A. B. K.
,
Rao
,
P. V. M.
, and
Saha
,
S. K.
,
2003
, “
Workspace and Dexterity Analyses of Hexaslide Machine Tools
,”
IEEE International Conference on Robotics & Automation
,
Taipei, Taiwan
,
Sept. 14–19
,
IEEE
,
New York
.
40.
Gosselin
,
C.
, and
Angeles
,
J.
,
2009
, “
A Global Performance Index for the Kinematic Optimisation of Robotic Manipulators
,”
ASME J. Mech. Des.
,
113
(
3
), pp.
220
226
. 10.1115/1.2912772
41.
Pittens K
,
H.
, and
Podhorodeski R
,
P.
,
2010
, “
A Family of Stewart Platforms With Optimal Dexterity
,”
J. Field Rob.
,
10
(
4
), pp.
463
479
.
42.
Asada
,
H.
,
1983
, “
A Geometrical Representation of Manipulator Dynamics and Its Application to Arm Design
,”
ASME J. Dyn. Syst. Meas. Contr.
,
105
(
3
), pp.
131
135
. 10.1115/1.3140644
43.
Wu
,
J.
,
Wang
,
J.
,
Li
,
T.
,
Wang
,
L.
, and
Guan
,
L.
,
2008
, “
Dynamic Dexterity of a Planar 2DOF Parallel Manipulator in a Hybrid Machine Tool
,”
Robotica
,
26
(
1
), pp.
93
98
. 10.1017/S0263574707003621
44.
Liu X
,
J.
,
Jin Z
,
L.
, and
Gao
,
F.
,
2000
, “
Optimum Design of 3-DOF Spherical Parallel Manipulators With Respect to the Conditioning and Stiffness Indices
,”
Mech. Mach. Theory
,
35
(
9
), pp.
1257
1267
. 10.1016/S0094-114X(99)00072-5
45.
Sun
,
T.
,
Lian
,
B.
,
Song
,
Y.
, and
Feng
,
L.
,
2019
, “
Elasto-Dynamic Optimization of a 5-DoF Parallel Kinematic Machine Considering Parameter Uncertainty
,”
IEEE/ASME Trans. Mechatron.
,
24
(
1
), pp.
315
325
. 10.1109/TMECH.2019.2891355
You do not currently have access to this content.