The process of selective laser sintering (SLS) involves selective heating and fusion of powdered material using a moving laser beam. Because of its complicated manufacturing process, physical modeling of the transformation from powder to final product in the SLS process is currently a challenge. Existing simulations of transient temperatures during this process are performed either using finite-element (FE) or discrete-element (DE) methods which are either inaccurate in representing the heat-affected zone (HAZ) or computationally expensive to be practical in large-scale industrial applications. In this work, a new computational model for physical modeling of the transient temperature of the powder bed during the SLS process is developed that combines the FE and the DE methods and accounts for the dynamic changes of particle contact areas in the HAZ. The results show significant improvements in computational efficiency over traditional DE simulations while maintaining the same level of accuracy.

References

1.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2010
,
Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing
,
Springer
,
Berlin
.
2.
Attar
,
E.
,
2011
, “
Simulation of Selective Electron Beam Melting Processes
,” D. Ing, dissertation, University of Erlangen-Nuremberg, Erlangen, Germany.
3.
Kruth
,
J.-P.
,
Mercelis
,
P.
,
Van Vaerenbergh
,
J.
,
Froyen
,
L.
, and
Rombouts
,
M.
,
2005
, “
Binding Mechanisms in Selective Laser Sintering and Selective Laser Melting
,”
Rapid Prototyping J.
,
11
(
1
), pp.
26
36
.
4.
Kruth
,
J.-P.
,
Levy
,
G.
,
Klocke
,
F.
, and
Childs
,
T. H. C.
,
2007
, “
Consolidation Phenomena in Laser and Powder-Bed Based Layered Manufacturing
,”
Procedia CIRP
,
56
(
2
), pp.
730
759
.
5.
Chryssolouris
,
G.
,
2006
,
Manufacturing Systems: Theory and Practice
, 2nd, ed.,
Springer
,
Berlin
, pp.
101
103
.
6.
Duley
,
W. W.
,
1983
,
Laser Processing and Analysis of Materials
,
Plenum Press
,
New York
.
7.
Matsumoto
,
M.
,
Shiomi
,
M.
,
Osakada
,
K.
, and
Abe
,
F.
,
2002
, “
Finite Element Analysis of Single Layer Forming on Metallic Powder Bed in Rapid Prototyping by Selective Laser Processing
,”
Int. J. Mach. Tools Manuf.
,
42
(
1
), pp.
61
67
.
8.
Nelson
,
J. C.
,
Xue
,
S.
,
Barlow
,
J. W.
,
Beaman
,
J. J.
,
Marcus
,
H. L.
, and
Bourell
,
D. L.
,
1993
, “
Model of the Selective Laser Sintering of Bisphenol-A Polycarbonate
,”
Ind. Eng. Chem. Res.
,
32
(
10
), pp.
2305
2317
.
9.
Bugeda
,
G.
,
Cervera
,
M.
, and
Lombera
,
G.
,
1999
, “
Numerical Prediction of Temperature and Density Distributions in Selective Laser Sintering Processes
,”
Rapid Prototyping J.
,
5
(
1
), pp.
21
26
.
10.
Kolossov
,
S.
,
Boillat
,
E.
,
Glardon
,
R.
,
Fischer
,
P.
, and
Locher
,
M.
,
2004
, “
3D FE Simulation for Temperature Evolution in the Selective Laser Sintering Process
,”
Int. J. Mach. Tools Manuf.
,
44
(2–3), pp.
117
123
.
11.
Patil
,
R. B.
, and
Yadava
,
V.
,
2007
, “
Finite Element Analysis of Temperature Distribution in Single Metallic Powder Layer During Metal Laser Sintering
,”
Int. J. Mach. Tools Manuf.
,
47
(7–8), pp.
1069
1080
.
12.
Xing
,
J.
,
Sun
,
W.
, and
Rana
,
R. S.
,
2013
, “
3D Modeling and Testing of Transient Temperature in Selective Laser Sintering (SLS) Process
,”
Optik
,
124
(
4
), pp.
301
304
.
13.
Parhami
,
F.
, and
McMeeking
,
R. M.
,
1998
, “
A Network Model for Initial Stage Sintering
,”
Mech. Mater.
,
27
(
2
), pp.
111
124
.
14.
Zhou
,
J.
,
Zhang
,
Y.
, and
Chen
,
J. K.
,
2009
, “
Numerical Simulation of Random Packing of Spherical Particles for Powder-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
131
(
3
), p.
031004
.
15.
He
,
D.
,
Ekere
,
N. N.
, and
Cai
,
L.
,
1999
, “
Computer Simulation of Random Packing of Unequal Particles
,”
Phys. Rev. E
,
60
(
6
), pp.
7098
7104
.
16.
Zeng
,
K.
,
Pal
,
D.
,
Patil
,
N.
, and
Stucker
,
B.
,
2013
, “
A New Dynamic Mesh Method Applied to the Simulation of Selective Laser Melting
,”
24th International SFF Symposium—An Additive Manufacturing Conference
, SFF 2013, pp.
549
559
.
17.
Pal
,
D.
,
Patil
,
N.
,
Zeng
,
K.
, and
Stucker
,
B.
,
2014
, “
An Integrated Approach to Additive Manufacturing Simulations Using Physics Based, Coupled Multiscale Process Modeling
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061022
.
18.
Abyzov
,
A. M.
,
Goryunov
,
A. V.
, and
Shakhov
,
F. M.
,
2013
, “
Effective Thermal Conductivity of Disperse Materials. I. Compliance of Common Models With Experimental Data
,”
Int. J. Heat Mass Transfer
,
67
, pp.
752
767
.
19.
Ganeriwala
,
R.
, and
Zohdi
,
T. I.
,
2014
, “
Multiphysics Modeling and Simulation of Selective Laser Sintering Manufacturing Process
,”
Procedia CIRP
,
14
, pp.
299
304
.
20.
Zohdi
,
T. I.
,
2013
, “
Rapid Simulation of Laser Processing of Discrete Particulate Materials
,”
Arch. Comput. Methods Eng.
,
20
(
4
), pp.
309
325
.
21.
Kovaleva
,
I.
,
Kovalev
,
O.
, and
Smurov
,
I.
,
2014
, “
Model of Heat and Mass Transfer in Random Packing Layer of Powder Particles in Selective Laser Melting
,”
Phys. Procedia
,
56
, pp.
400
410
.
22.
Haddad
,
H.
,
Guessasma
,
M.
, and
Fortin
,
J.
,
2014
, “
Heat Transfer by Conduction Using DEM-FEM Coupling Method
,”
Comput. Mater. Sci.
,
81
, pp.
339
347
.
23.
Zhou
,
J.
,
Zhang
,
Y.
, and
Chen
,
J. K.
,
2009
, “
Numerical Simulation of Laser Irradiation to a Randomly Packed Bimodal Powder Bed
,”
Int. J. Heat Mass Transfer
,
52
(
13–14
), pp.
3137
3146
.
24.
Saleh
,
B. E.
, and
Teich
,
M. C.
,
1991
,
Fundamentals of Photonics
,
Wiley
,
New York
.
25.
Sha
,
W. C.
, and
Ganic
,
E. N.
,
1981
, “
Transient Heat Conduction at low Biot Numbers: A Supplement to Heisler's Charts
,”
Lett. Heat Mass Transfer
,
8
(
5
), pp.
379
395
.
26.
Liang
,
Y.
, and
Li
,
X.
,
2014
, “
A New Model for Heat Transfer Through the Contact Network of Randomly Packed Granular Material
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
982
990
.
27.
Cundall
,
P. A.
, and
Strack
,
O. D. L.
,
1979
, “
A Discrete Numerical Model for Granular Assemblies
,”
Geotechnique
,
29
(
1
), pp.
47
65
.
28.
Coble
,
R. L.
,
1958
, “
Initial Sintering of Alumina and Hematite
,”
J. Am. Ceram. Soc.
,
41
(
2
), pp.
55
62
.
29.
Martin
,
C. L.
,
Schneider
,
L. C. R.
,
Olmos
,
L.
, and
Bouvard
,
D.
,
2006
, “
Discrete Element Modeling of Metallic Powder Sintering
,”
Scr. Mater.
,
55
(
5
), pp.
425
428
.
30.
Hou
,
T. Y.
, and
Wu
,
X.-H.
,
1997
, “
A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media
,”
J. Comput. Phys.
,
134
(
1
), pp.
169
189
.
31.
Zhang
,
H. W.
,
Zhou
,
Q.
, and
Zheng
,
Y. G.
,
2011
, “
A Multi-Scale Method for Thermal Conduction Simulation in Granular Materials
,”
Comput. Mater. Sci.
,
50
(
10
), pp.
2750
2758
.
32.
Bathe
,
K. J.
,
1996
,
Finite Element Procedures
,
Prentice-Hall
,
Upper Saddle River, NJ
.
You do not currently have access to this content.