Abstract

Nowadays, fractional differential equations (FDE's), with their numerical solutions, are a developing area of research since differential equations of these sort are a frequent presence in different fields of physical sciences. In this research article, a Bessel Artificial Neural Network Technique (BANNT) has been presented to solve Systems of FDE's where fractional derivative operator (practiced here) is of a newly defined Atangana Baleanu Caputo (ABC) type. ABCFD is a modified version of caputo fractional derivative that helps in solving such systems of FDE's. This technique integrates knowledge about the FDE's into BANNT and the training sets. BANNT is being used repeatedly to solve different variety of problems addressing a wide range of disciplines. After developing the technique, the BANNT is applied to some system of differential equations of the Fractional Order. Numerous illustrations have been presented to elucidate the implementation and efficiency of the BANNT, and the numerical results obtained are then graphically plotted.

References

1.
Liang
,
Y.
,
Wang
,
S.
,
Chen
,
W.
,
Zhou
,
Z.
, and
Magin
,
R. L.
,
2019
, “
A Survey of Models of Ultraslow Diffusion in Heterogeneous Materials
,”
ASME Appl. Mech. Rev.
,
71
(
4
), p.
040802
.10.1115/1.4044055
2.
Chen
,
W.
,
Liang
,
Y.
, and
Hei
,
X.
,
2016
, “
Structural Derivative Based on Inverse Mittag-Leffler Function for Modeling Ultraslow Diffusion
,”
Fractional Calculus Appl. Anal.
,
19
(
5
), pp.
1250
1261
.10.1515/fca-2016-0064
3.
Liang
,
Y.
, and
Chen
,
W.
,
2018
, “
A Non-Local Structural Derivative Model for Characterization of Ultraslow Diffusion in Dense Colloids
,”
Commun. Nonlinear Sci. Numer. Simul.
,
56
, pp.
131
137
.10.1016/j.cnsns.2017.07.027
4.
Bush
,
V.
,
1929
,
Operational Circuit Analysis
,
Wiley & Sons
, New York.
5.
Davis
,
H. T.
,
1936
,
The Theory of Linear Operators
,
Principia Press
, Bloomington, IN.
6.
Oldham
,
K. B.
, and
Spanier
,
J.
,
1974
,
The Fractional Calculus
,
Academic Press
,
San Diego
.
7.
Miller
,
K. S.
, and
Ross
,
B.
,
1993
,
An Introduction to the Fractional Calculus and Fractional Differential Equations
,
Wiley
,
New York
.
8.
Samko
,
S. G.
,
Kilbas
,
A. A.
, and
Marichev
,
O. I.
,
1993
,
Fractional Integrals and Derivatives- Theory and Applications
,
Gordon and Breach Science Publishers
, Amsterdam, The Netherlands.
9.
West
,
B. J.
,
Bologna
,
M.
, and
Grigolini
,
P.
,
2003
,
Physics of Fractal Operators
,
Springer
, New York.
10.
Oustaloup
,
A.
,
1995
,
La Derivation Nonentière
,
Hermès
, Paris, France.
11.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
San Diego
.
12.
Khalid
,
M.
,
Sultana
,
M.
,
Zaidi
,
F.
, and
Arshad
,
U.
,
2015
, “
Application of Elzaki Transform Method on Some Fractional Differential Equations
,”
Math. Theory Model.
,
5
(
1
), pp.
89
96
.https://www.iiste.org/Journals/index.php/MTM/article/view/19239/19791#google_vignette
13.
Khalid
,
M.
,
Sultana
,
M.
, and
Arshad
,
U.
,
2017
, “
Procuring Analytical Solution of Nonlinear Nuclear Magnetic Resonance Model of Fraction Order
,”
Sohag J. Math.
,
4
(
3
), pp.
69
73
.10.18576/sjm/040302
14.
Ibis
,
B.
, and
Bayram
,
M.
,
2011
, “
Numerical Comparison of Methods for Solving Fractional Differential–Algebraic Equations (FDAEs)
,”
Comput. Math. Appl.
,
62
(
8
), pp.
3270
3278
.10.1016/j.camwa.2011.08.043
15.
Jafarian
,
A.
,
Mokhtarpour
,
M.
, and
Baleanu
,
D.
,
2017
, “
Artificial Neural Network Approach for a Class of Fractional Ordinary Differential Equation
,”
Neural Comput. Appl.
,
28
, pp.
765
773
.10.1007/s00521-015-2104-8
16.
Ahmad
,
S.
,
Rihan
,
F. A.
,
Ullah
,
A.
,
Al-Mdallal
,
Q. M.
,
Akgül
,
A.
, and
Gulalai
,
S. A.
,
2022
, “
Nonlinear Analysis of a Nonlinear Modified KdV Equation Under Atangana Baleanu Caputo Derivative
,”
AIMS Math.
,
7
(
5
), pp.
7847
7865
.10.3934/math.2022439
17.
Bell
,
W. W.
,
1967
,
Special Functions for Scientists and Engineers
,
D. Van Nostrand Company, CEF
,
Canada
.
18.
Meade
,
A. J.
,
1994
, “
Numerical Solution of Linear Ordinary Differential Equations by Feedforward Neural Networks
,”
Math. Comput. Modell.
,
19
(
12
), pp.
1
25
.10.1016/0895-7177(94)90095-7
19.
Lagaris
,
I. E.
,
Likas
,
A. C.
, and
Fotiadis
,
D. I.
,
1998
, “
Artificial Neural Networks for Solving Ordinary and Partial Differential Equations
,”
IEEE Trans. Neural Networks
,
9
(
5
), pp.
1
26
.10.1109/72.712178
20.
Ghosh
,
U.
,
Sarkar
,
S.
, and
Das
,
S.
,
2015
, “
Solution of System of Linear Fractional Differential Equations With a Modified Derivative of Jumarie Type
,”
Am. J. Math. Anal.
,
3
(
3
), pp.
72
84
.https://arxiv.org/pdf/1510.00385
You do not currently have access to this content.