Abstract

Artificial neural networks (NNs) are a type of machine learning (ML) algorithm that mimics the functioning of the human brain to learn and generalize patterns from large amounts of data without the need for explicit knowledge of the system's physics. Employing NNs to predict time responses in the field of mechanical system dynamics is still in its infancy. The aim of this contribution is to give an overview of design considerations for NN-based time-stepping schemes for nonlinear mechanical systems. To this end, numerous design parameters and choices available when creating a NN are presented, and their effects on the accuracy of predicting the dynamics of nonlinear mechanical systems are discussed. The findings are presented with the support of three test cases: a double pendulum, a duffing oscillator, and a gyroscope. Factors such as initial conditions, external forcing, as well as system parameters were varied to demonstrate the robustness of the proposed approaches. Furthermore, practical design considerations such as noise-sensitivity as well as the ability to extrapolate are examined. Ultimately, we are able to show that NNs are capable of functioning as time-stepping schemes for nonlinear mechanical system dynamics applications.

References

1.
Willard
,
J.
,
Jia
,
X.
,
Xu
,
S.
,
Steinbach
,
M.
, and
Kumar
,
V.
,
2020
, “
Integrating Scientific Knowledge With Machine Learning for Engineering and Environmental Systems
,”
ACM Comput. Surv.
, 55(4), pp.
1
37
.10.1145/3514228
2.
Frank
,
M.
,
Drikakis
,
D.
, and
Charissis
,
V.
,
2020
, “
Machine-Learning Methods for Computational Science and Engineering
,”
Computation
,
8
(
1
), p.
15
.10.3390/computation8010015
3.
Cunha
,
B.
,
Droz
,
C.
,
Zine
,
A.
,
Foulard
,
S.
, and
Ichchou
,
M.
,
2022
, “
A Review of Machine Learning Methods Applied to Structural Dynamics and Vibroacoustic
,”
Mech. Syst. Signal. Process.
, 200, p.
110535
.10.1016/j.ymssp.2023.110535
4.
Masri
,
S. F.
,
Chassiakos
,
A. G.
, and
Caughey
,
T. K.
,
1993
, “
Identification of Nonlinear Dynamic Systems Using Neural Networks
,”
ASME J. Appl. Mech.
,
60
(
1
), pp.
123
133
.10.1115/1.2900734
5.
Roehrl
,
M. A.
,
Runkler
,
T. A.
,
Brandtstetter
,
V.
,
Tokic
,
M.
, and
Obermayer
,
S.
,
2020
, “
Modeling System Dynamics With Physics-Informed Neural Networks Based on Lagrangian Mechanics
,”
IFAC-PapersOnLine
,
53
(
2
), pp.
9195
9200
.10.1016/j.ifacol.2020.12.2182
6.
De Groote
,
W.
,
Kikken
,
E.
,
Hostens
,
E.
,
Van Hoecke
,
S.
, and
Crevecoeur
,
G.
,
2022
, “
Neural Network Augmented Physics Models for Systems With Partially Unknown Dynamics: Application to Slider-Crank Mechanism
,”
IEEE/ASME Trans. Mechatron.
,
27
(
1
), pp.
103
114
.10.1109/TMECH.2021.3058536
7.
Stoffel
,
M.
,
Gulakala
,
R.
,
Bamer
,
F.
, and
Markert
,
B.
,
2020
, “
Artificial Neural Networks in Structural Dynamics: A New Modular Radial Basis Function Approach vs. Convolutional and Feedforward Topologies
,”
Comput. Methods Appl. Mech. Eng.
,
364
, p.
112989
.10.1016/j.cma.2020.112989
8.
Birky
,
D.
,
Ladd
,
J.
,
Guardiola
,
I.
, and
Young
,
A.
,
2021
, “
Predicting the Dynamic Response of a Structure Using an Artificial Neural Network
,”
J. Low Freq. Noise, Vib. Active Control
,
41
(
1
), pp.
182
195
.10.1177/14613484211038408
9.
Wu, R.-T., and Jahanshahi, M. R., 2019, “Deep Convolutional Neural Network for Structural Dynamic Response Estimation and System Identification,”
J. Eng. Mech.
, 145(1).10.1061/(ASCE)EM.1943-7889.0001556
10.
Choi
,
H.-S.
,
An
,
J.
,
Han
,
S.
,
Kim
,
J.-G.
,
Jung
,
J.-Y.
,
Choi
,
J.
,
Orzechowski
,
G.
,
Mikkola
,
A.
, and
Choi
,
J. H.
,
2020
, “
Data-Driven Simulation for General-Purpose Multibody Dynamics Using Deep Neural Networks
,”
Multibody Syst. Dyn.
,
51
(
4
), pp.
419
454
.10.1007/s11044-020-09772-8
11.
Koopman
,
B. O.
,
1931
, “
Hamiltonian Systems and Transformation in Hilbert Space
,”
Proc. Natl. Acad. Sci.
,
17
(
5
), pp.
315
318
.10.1073/pnas.17.5.315
12.
Brunton
,
S. L.
,
Budišić
,
M.
,
Kaiser
,
E.
, and
Kutz
,
J. N.
,
2021
, “
Modern Koopman Theory for Dynamical Systems
,”
SIAM Review
, 64(2), pp.
229
340
.10.1137/21M1401243
13.
Azencot
,
O.
,
Erichson
,
N. B.
,
Lin
,
V.
, and
Mahoney
,
M. W.
,
2020
, “
Forecasting Sequential Data Using Consistent Koopman Autoencoders
,”
International Conference on Machine Learning
, Vienna, Austria, July 13–18, pp.
475
485
.https://proceedings.mlr.press/v119/azencot20a/azencot20a.pdf
14.
Cranmer
,
M.
,
Greydanus
,
S.
,
Hoyer
,
S.
,
Battaglia
,
P.
,
Spergel
,
D.
, and
Ho
,
S.
,
2020
, “
Lagrangian Neural Networks
,” e-print
arXiv:2003.04630
.10.48550/arXiv.2003.04630
15.
Greydanus
,
S.
,
Dzamba
,
M.
, and
Yosinski
,
J.
,
2019
, “
Hamiltonian Neural Networks
,” e-print
arXiv:1906.01563
.10.48550/arXiv.1906.01563
16.
Najera-Flores
,
D. A.
, and
Todd
,
M. D.
,
2022
, “
Ensemble of Numerics-Informed Neural Networks With Embedded Hamiltonian Constraints for Modeling Nonlinear Structural Dynamics
,”
Nonlinear Structures & Systems
, Vol.
1
,
Springer International Publishing
, Berlin, pp.
27
30
.
17.
Gupta
,
J. K.
,
Menda
,
K.
,
Manchester
,
Z.
, and
Kochenderfer
,
M. J.
,
2019
, “
A General Framework for Structured Learning of Mechanical Systems
,” e-print
arXiv:1902.08705
.10.48550/arXiv.1902.08705
18.
Verlet
,
L.
,
1967
, “
Computer ‘Experiments’ on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules
,”
Phys. Rev.
,
159
(
1
), pp.
98
103
.10.1103/PhysRev.159.98
19.
Slimak
,
T.
,
2015
, “ASME-IDETC2023-112087,” accessed May 15, 2015, https://gitlab.lrz.de/tomas.slimak/asme-idetc2023-112087
20.
Karpathy
,
A.
,
2015
, “The Unreasonable Effectiveness of Recurrent Neural Networks,” accessed Jan. 20, 2024, http://karpathy.github.io/2015/05/21/rnn-effectiveness/
21.
Xu
,
K.
,
Zhang
,
M.
,
Li
,
J.
,
Du
,
S. S.
,
Kawarabayashi
,
K.-I.
, and
Jegelka
,
S.
,
2020
, “
How Neural Networks Extrapolate: From Feedforward to Graph Neural Networks
,” e-print
arXiv:2009.11848
.10.48550/arXiv.2009.11848
You do not currently have access to this content.