Abstract
In this article, we focus on the relations between the asymptotics of solutions and the sensitivity to initial values of fractional differential systems. To investigate this problem, we consider the ψ-fractional calculus, which is considered to be a generalization of those of Riemann–Liouville and Hadamard. For this purpose, we define Lyapunov exponents for ψ-fractional differential systems and estimate their upper bounds. Examples are presented to demonstrate the accuracy of our results.
Issue Section:
Research Papers
References
1.
Tarasov
,
E. V.
, and
Tarasova
,
V. V.
, 2021
, Economic Dynamics With Memory: Fractional Calculus Approach
,
De Gruyter
,
Berlin, Germany
.2.
Li
,
C. P.
, and
Cai
,
M.
, 2019
, Theory and Numerical Approximations of Fractional Integrals and Derivatives
,
Siam
,
Philadelphia, PA
.3.
Han
,
J. F.
,
Li
,
C. P.
, and
Zeng
,
S. D.
, 2022
, “
Applications of Generalized Fractional Hemivariational Inequalities in Solid Viscoelastic Contact Mechanics
,” Commun. Nonlinear Sci. Numer. Simul.
,
115
, p. 106718
.10.1016/j.cnsns.2022.1067184.
Li
,
C. P.
, and
Li
,
Z. Q.
, 2021
, “
Stability and ψ-Algebraic Decay of the Solution to ψ-Fractional Differential System
,” Int. J. Nonlinear Sci. Numer. Simul.
, epub.10.1515/ijnsns-2021-01895.
Kilbas
,
A. A.
,
Srivastava
,
H. M.
, and
Trujillo
,
J. J.
, 2006
, Theory and Applications of Fractional Differential Equations
,
Elsevier Science
,
Amsterdam, The Netherlands
.6.
Samko
,
S. G.
,
Kilbas
,
A. A.
, and
Marichev
,
O. I.
, 1993
, Fractional Integrals and Derivatives: Theory and Applications
,
Gordon and Breach Science Publishers
,
Amsterdam, The Netherlands
.7.
Hadamard
,
J.
, 1892
, “
Essai Sur L'étude Des Functions Données Par Leur Développement de Taylor
,” J. Math. Pures Appl.
,
8
(4
), pp. 101
–186
.http://portail.mathdoc.fr/JMPA/afficher_notice.php?id=JMPA_1892_4_8_A4_08.
Ma
,
L.
, and
Wu
,
B.
, 2023
, “
On the Fractional Lyapunov Exponent for Hadamard-Type Fractional Differential System
,” Chaos
,
33
(1
), p. 013117
.10.1063/5.01316619.
Jarad
,
F.
, and
Abdeljawad
,
T.
, 2020
, “
Generalized Fractional Derivatives and Laplace Transform
,” Discrete Contin. Dyn. Syst. Ser. S
,
13
(3
), pp. 709
–722
.10.3934/dcdss.202003910.
Fan
,
E. Y.
,
Li
,
C. P.
, and
Stynes
,
M.
, 2023
, “
Discretized General Fractional Derivative
,” Math. Comput. Simul.
,
208
, pp. 501
–534
.10.1016/j.matcom.2023.01.03011.
Li
,
C. P.
,
Li
,
Z. Q.
, and
Yin
,
C. T.
, 2022
, “
Which Kind of Fractional Partial Differential Equations Has Solution With Exponential Asymptotics?
,” Proceedings of the International Conference on Fractional Differentiation and Its Applications (ICFDA'21)
, Poland, Sept. 6–8,
A.
Dzielinski
,
D.
Sierociuk
, and
P.
Ostalczyk
, eds.,
Springer
,
Cham, Switzerland
, pp. 112
–117
.12.
Cai
,
M.
,
Karniadakis
,
G. E.
, and
Li
,
C. P.
, 2022
, “
Fractional SEIR Model and Data-Driven Predictions of COVID-19 Dynamics of Omicron Variant
,” Chaos
,
32
(7
), p. 071101
.10.1063/5.009945013.
Fan
,
E. Y.
,
Li
,
C. P.
, and
Li
,
Z. Q.
, 2023
, “
Numerical Methods for the Caputo-Type Fractional Derivative With an Exponential Kernel
,” J. Appl. Anal. Comput.
,
13
(1
), pp. 376
–423
.10.11948/2022017714.
Podlubny
,
I.
, 1999
, Fractional Differential Equations
,
Academic Press
,
San Diego, CA
.15.
Li
,
C. P.
,
Gong
,
Z. Q.
,
Qian
,
D. L.
, and
Chen
,
Y. Q.
, 2010
, “
On the Bound of the Lyapunov Exponents for the Fractional Differential Systems
,” Chaos
,
20
(1
), p. 013127
.10.1063/1.331427716.
Li
,
C. P.
, and
Yin
,
C. T.
, 2021
, “
An Estimate of the Bound of the Lyapunov Exponents for Caputo-Hadamard Fractional Differential System
,” ASME J. Comput. Nonlinear Dyn.
,
16
(7
), p. 071002
.10.1115/1.405102417.
N'Gbo
,
N.
, and
Tang
,
J. H.
, 2022
, “
On the Lyapunov Exponents of Fractional Differential Systems With an Exponential Kernel
,” Int. J. Bifurcation Chaos
,
32
(12
), p. 2250188
.10.1142/S021812742250188718.
Li
,
C. P.
, and
Li
,
Z. Q.
, 2021
, “
Stability and Logarithmic Decay of the Solution to Hadamard-Type Fractional Differential Equation
,” J. Nonlinear Sci.
,
31
(2
), p. 31
.10.1007/s00332-021-09691-819.
Ye
,
H. P.
,
Gao
,
J. M.
, and
Ding
,
Y. S.
, 2007
, “
A Generalized Gronwall Inequality and Its Application to a Fractional Differential Equation
,” J. Math. Anal. Appl.
,
328
(2
), pp. 1075
–1081
.10.1016/j.jmaa.2006.05.06120.
Li
,
C. P.
, and
Chen
,
G. R.
, 2003
, “
On the Marotto-Li-Chen Theorem and Its Application to Chaotification of Multi-Dimensional Discrete Dynamical Systems
,” Chaos, Solitons Fractals
,
18
(4
), pp. 807
–817
.10.1016/S0960-0779(03)00032-8Copyright © 2023 by ASME
You do not currently have access to this content.