The dynamic model of a robotic system is prone to parametric and structural uncertainties, as well as dynamic disturbances, such as dissipative forces, input noise and vibrations, to name a few. In addition, it is conventional to access only a part of the state, such that, when just the joint positions are available, the use of an observer, or a differentiator, is required. Besides, it has been demonstrated that some disturbances are not necessarily differentiable in any integer-order sense, requiring for a physically realizable but robust controller to face them. In order to enforce a stable tracking in the case of nondifferentiable disturbances, and accessing just to the robot configuration, an output feedback controller is proposed, which is continuous and induces the convergence of the system state into a stable integral error manifold, by means of a fractional-order reaching dynamics. Simulation and experimental studies are conducted to show the reliability of the proposed scheme.

References

1.
Spong
,
M. W.
, and
Vidyasagar
,
M.
,
1989
,
Robot Dynamics and Control
,
Wiley
,
New York
.
2.
An
,
C. H.
,
Atkeson
,
C. G.
,
Griffiths
,
J. D.
, and
Hollerbach
,
J. M.
,
1989
, “
Experimental Evaluation of Feedforward and Computed Torque Control
,”
IEEE Trans. Rob. Autom.
,
5
(
3
), pp.
368
373
.
3.
Middletone
,
R. H.
, and
Goodwin
,
G. C.
,
1986
, “
Adaptive Computed Torque Control for Rigid Link Manipulators
,”
IEEE Conference on Decision and Control
(
CDC
),
Athens, Greece
,
Dec. 10–12
, pp.
68
73
.
4.
Parra-Vega
,
V.
, and
Arimoto
,
S.
,
1996
, “
A Passivity-Based Adaptive Sliding Mode Position-Force Control for Robot Manipulators
,”
Int. J. Adapt. Control Signal Process.
,
10
(
4–5
), pp.
365
377
.
5.
Parra-Vega
,
V.
,
Rodríguez-Angeles
,
A.
,
Arimoto
,
S.
, and
Hirzinger
,
G.
,
2001
, “
High Precision Constrained Grasping With Cooperative Adaptive Handcontrol
,”
J. Intell. Rob. Syst.
,
32
(
3
), pp.
235
254
.
6.
Liu
,
Y. H.
,
Arimoto
,
S.
,
Parra-Vega
,
V.
, and
Kitagaki
,
K.
,
1997
, “
Decentralized Adaptive Control of Multiple Manipulators in Co-Operations
,”
Int. J. Control
,
67
(
5
), pp.
649
674
.
7.
Parra-Vega
,
V.
, and
Arimoto
,
S.
,
1995
, “
An Exponentially Convergent Adaptive Sliding Mode Control of Robot Manipulators
,”
Int. J. Syst. Sci.
,
26
(
12
), pp.
2263
2276
.
8.
Song
,
Z.
,
Yi
,
J.
,
Zhao
,
D.
, and
Li
,
X.
,
2005
, “
A Computed Torque Controller for Uncertain Robotic Manipulator Systems: Fuzzy Approach
,”
Fuzzy Sets Syst.
,
154
(
2
), pp.
208
226
.
9.
Utkin
,
V. I.
, and
Chang
,
H. C.
,
2002
, “
Sliding Mode Control on Electro-Mechanical Systems
,”
Math. Probl. Eng.
,
8
(
4–5
), pp.
451
473
.
10.
Parra-Vega
,
V.
,
Arimoto
,
S.
,
Liu
,
Y. H.
,
Hirzinger
,
G.
, and
Akella
,
P.
,
2003
, “
Dynamic Sliding PID Control for Tracking of Robot Manipulators: Theory and Experiments
,”
IEEE Trans. Rob. Autom.
,
19
(
6
), pp.
967
976
.
11.
Vázquez
,
C.
,
Collado
,
J.
, and
Fridman
,
L.
,
2014
, “
Super Twisting Control of a Parametrically Excited Overhead Crane
,”
J. Franklin Inst.
,
351
(
4
), pp.
2283
2298
.
12.
Alaviyan-Shahri
,
E. S.
,
Alfi
,
A.
, and
Tenreiro-Machado
,
J. A.
,
2016
, “
Stabilization of Fractional-Order Systems Subject to Saturation Element Using Fractional Dynamic Output Feedback Sliding Mode Control
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
3
), p.
031014
.
13.
Khamsuwan
,
P.
, and
Kuntanapreeda
,
S.
,
2016
, “
A Linear Matrix Inequality Approach to Output Feedback Control of Fractional-Order Unified Chaotic Systems With One Control Input
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
051021
.
14.
Tavazoei
,
M. S.
,
2011
, “
Maximal Bound for Output Feedback Gain in Stabilization of Fixed Points of Fractional-Order Chaotic Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
3
), p.
031012
.
15.
Azarang
,
A.
,
Miri
,
M.
,
Kamaei
,
S.
, and
Asemani
,
M. H.
,
2017
, “
Nonfragile Fuzzy Output Feedback Synchronization of a New Chaotic System: Design and Implementation
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
1
), p.
011008
.
16.
Davila
,
J.
,
Fridman
,
L.
, and
Levant
,
A.
,
2005
, “
Second-Order Sliding-Mode Observer for Mechanical Systems
,”
IEEE Trans. Autom. Control
,
50
(
11
), pp.
1785
1789
.
17.
Levant
,
A.
,
1998
, “
Robust Exact Differentiation Via Sliding Mode Technique
,”
Automatica
,
34
(
3
), pp.
379
384
.
18.
Levant
,
A.
,
2007
, “
Principles of 2-Sliding Mode Design
,”
Automatica
,
43
(
4
), pp.
576
586
.
19.
Vázquez
,
C.
,
Aranovskiy
,
S.
,
Freidovich
,
L. B.
, and
Fridman
,
L. M.
,
2016
, “
Time-Varying Gain Differentiator: A Mobile Hydraulic System Case Study
,”
IEEE Trans. Control Syst. Technol.
,
24
(
5
), pp.
1740
1750
.
20.
Si-Ammour
,
A.
,
Djennoune
,
S.
, and
Bettayeb
,
M.
,
2009
, “
A Sliding Mode Control for Linear Fractional Systems With Input and State Delays
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
5
), pp.
2310
2318
.
21.
Efe
,
M. Ö.
,
2010
, “
Fractional Order Sliding Mode Controller Design for Fractional Order Dynamic Systems
,”
New Trends in Nanotechnology and Fractional Calculus Applications
,
Springer
,
Dordrecht, The Netherlands
.
22.
Balochian
,
S.
,
Sedigh
,
A. K.
, and
Zare
,
A.
,
2011
, “
Variable Structure Control of Linear Time Invariant Fractional Order Systems Using a Finite Number of State Feedback Law
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
3
), pp.
1433
1442
.
23.
Tenreiro-Machado
,
J. A.
,
2012
, “
The Effect of Fractional Order in Variable Structure Control
,”
Comput. Math. Appl.
,
64
(
10
), pp.
3340
3350
.
24.
Pisano
,
A.
,
Rapaicć
,
M. R.
,
Jelicčicć
,
Z. D.
, and
Usai
,
E.
, 2010, “
Sliding Mode Control Approaches to the Robust Regulation of Linear Multivariable Fractional-Order Dynamics
,”
Int. J. Robust and Nonlinear Control
,
20
(18), pp. 2045–2056.
25.
Efe
,
M. Ö.
,
2011
, “
Integral Sliding Mode Control of a Quadrotor With Fractional Order Reaching Dynamics
,”
Trans. Inst. Meas. Control
,
33
(
8
), pp.
985
1003
.
26.
Hu
,
W.
,
Ding
,
D.
, and
Wang
,
N.
,
2017
, “
Nonlinear Dynamic Analysis of a Simplest Fractional-Order Delayed Memristive Chaotic System
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
4
), p.
041003
.
27.
Duc
,
T. M.
,
Hoa
,
N. V.
, and
Dao
,
T. P.
,
2018
, “
Adaptive Fuzzy Fractional-Order Nonsingular Terminal Sliding Mode Control for a Class of Second-Order Nonlinear Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
3
), p.
031004
.
28.
Muñoz-Vázquez
,
A. J.
,
Parra-Vega
,
V.
, and
Sánchez-Orta
,
A.
,
2018
, “
Fractional-Order Nonlinear Disturbance Observer Based Control of Fractional-Order Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
7
), p.
071007
.
29.
Muñoz-Vázquez
,
A. J.
,
Parra-Vega
,
V.
,
Sánchez-Orta
,
A.
, and
Romero-Galván
,
G.
,
2017
, “
Finite-Time Disturbance Observer Via Continuous Fractional Sliding Modes
,”
Trans. Inst. Meas. Control
,
40
(14), pp. 3953–3963.
30.
Muñoz-Vázquez
,
A. J.
,
Parra-Veg
,
V.
,
Sánchez-Orta
,
A.
, and
Romero-Galván
,
G.
,
2017
, “
Output Feedback Finite-Time Stabilization of Systems Subject to Hölder Disturbances Via Continuous Fractional Sliding Modes
,”
Math. Probl. Eng.
,
2017
, p. 3146231.
31.
Muñoz-Vázquez
,
A. J.
,
Parra-Veg
,
V.
, and
Sánchez-Orta
,
A.
,
2017
, “
A Novel Continuous Fractional Sliding Mode Control
,”
Int. J. Syst. Sci.
,
48
(
13
), pp.
2901
2908
.
32.
Samko
,
S.
,
Kilbas
,
A.
, and
Marichev
,
O.
,
1993
,
Fractional Integrals and Derivatives. Theory and Applications
,
Gordon and Breach
,
Yverdon, Switzerland
.
33.
Utkin
,
V.
, and
Shi
,
J.
,
1996
, “
Integral Sliding Mode in Systems Operating Under Uncertainty Conditions
,”
IEEE Conference on Decision and Control
(
CDC
),
Kobe, Japan
,
Dec. 13
, pp.
4591
4596
.
34.
Oustaloup
,
A.
,
Mathieu
,
B.
, and
Lanusse
,
P.
,
1995
, “
The CRONE Control of Resonant Plants: Application to a Flexible Transmission
,”
Eur. J. Control
,
1
(
2
), pp.
113
121
.
35.
Chen
,
Y. Q.
,
Petrás
,
I.
, and
Xue
,
D.
,
2009
, “
Fractional Order Control—A Tutorial
,”
IEEE American Control Conference
(
ACC
),
St. Louis, MO
,
June 10–12
, pp.
1397
1411
.
You do not currently have access to this content.