Abstract

In this research, an experimental biomechanics construct was developed to reveal the mechanics of distal tibial fracture by submitting synthetic tibiae to cyclic loading, resulting in a combined stress state due to axial compression and bending loads. The synthetic tibia was fixed at the knee but allowed to rotate in the coronal and sagittal planes at the ankle. The first three loading regimes lasted for 4000 cycles/each, and the final until ultimate failure. After 12k±80 cycles, the observed failure patterns closely resembled distal tibial fractures. The collected data during cyclic loading were fitted into a phenomenological model to deduce the time-dependent response of the synthetic tibiae. Images were also collected and analyzed using digital image correlation to deduce the full-field state of strain. The latter revealed that longitudinal strain contours extended in the proximal–distal direction. The transverse strain contours exemplified a medial-to-lateral distribution, attributed to the combined contributions of the Poisson's effect and the flexural deformation from axial and bending components of the applied load, respectively. The experimental construct, full-field characterization, and data analysis approaches can be extended to elucidate the effect of different fixation devices on the overall mechanical behavior of the bone and validate computational models in future research.

References

1.
Larsen
,
P.
,
Elsoe
,
R.
,
Hansen
,
S. H.
,
Graven-Nielsen
,
T.
,
Laessoe
,
U.
, and
Rasmussen
,
S.
,
2015
, “
Incidence and Epidemiology of Tibial Shaft Fractures
,”
Injury
,
46
(
4
), pp.
746
750
.10.1016/j.injury.2014.12.027
2.
Ramponi
,
D. R.
, and
McSwigan
,
T.
,
2018
, “
Tibial Plateau Fractures
,”
Adv. Emerg. Nurs. J.
,
40
(
3
), pp.
155
161
.10.1097/TME.0000000000000194
3.
Mthethwa
,
J.
, and
Chikate
,
A.
,
2018
, “
A Review of the Management of Tibial Plateau Fractures
,”
Musculoskelet. Surg.
,
102
(
2
), pp.
119
127
.10.1007/s12306-017-0514-8
4.
Salduz
,
A.
,
Birisik
,
F.
,
Polat
,
G.
,
Bekler
,
B.
,
Bozdag
,
E.
, and
Kilicoglu
,
O.
,
2016
, “
The Effect of Screw Thread Length on Initial Stability of Schatzker Type 1 Tibial Plateau Fracture Fixation: A Biomechanical Study
,”
J. Orthop. Surg. Res.
,
11
(
1
), pp.
1
7
.10.1186/s13018-016-0484-9
5.
Fawdington
,
R. A.
,
Lotfi
,
N.
,
Beaven
,
A.
, and
Fenton
,
P.
,
2019
, “
Does the Use of Blocking Screws Improve Radiological Outcomes Following Intramedullary Nailing of Distal Tibia Fractures?
,”
Strategies Trauma Limb Reconstr.
,
14
(
1
), pp.
11
14
.10.5005/jp-journals-10080-1418
6.
Yoon
,
R. S.
, and
Liporace
,
F. A.
,
2016
, “
Intramedullary Nail and Plate Combination Fixation for Complex Distal Tibia Fractures: When and How?
,”
J. Orthop. Trauma
,
30
(
4
), pp.
S17
S21
.10.1097/BOT.0000000000000698
7.
Liu
,
X. K.
,
Xu
,
W. N.
,
Xue
,
Q. y.
, and
Liang
,
Q. W.
,
2019
, “
Intramedullary Nailing Versus Minimally Invasive Plate Osteosynthesis for Distal Tibial Fractures: A Systematic Review and Meta‐Analysis
,”
Orthop. Surg.
,
11
(
6
), pp.
954
965
.10.1111/os.12575
8.
Vaienti
,
E.
,
Schiavi
,
P.
,
Ceccarelli
,
F.
, and
Pogliacomi
,
F.
,
2019
, “
Treatment of Distal Tibial Fractures: Prospective Comparative Study Evaluating Two Surgical Procedures With Investigation for Predictive Factors of Unfavourable Outcome
,”
Int. Orthop.
,
43
(
1
), pp.
201
207
.10.1007/s00264-018-4121-6
9.
Bisaccia
,
M.
,
Cappiello
,
A.
,
Meccariello
,
L.
,
Rinonapoli
,
G.
,
Falzarano
,
G.
,
Medici
,
A.
,
Vicente
,
C. I.
, et al.,
2018
, “
Nail or Plate in the Management of Distal Extra-Articular Tibial Fracture, What is Better? Valuation of Outcomes
,”
Sicot-j
,
4
, p.
2
.10.1051/sicotj/2017058
10.
Vallier
,
H. A.
,
Cureton
,
B. A.
, and
Patterson
,
B. M.
,
2011
, “
Randomized, Prospective Comparison of Plate Versus Intramedullary Nail Fixation for Distal Tibia Shaft Fractures
,”
J. Orthop. Trauma
,
25
(
12
), pp.
736
741
.10.1097/BOT.0b013e318213f709
11.
Tarr
,
R. R.
,
Resnick
,
C. T.
,
Wagner
,
K. S.
, and
Sarmiento
,
A.
,
1985
, “
Changes in Tibiotalar Joint Contact Areas Following Experimentally Induced Tibial Angular Deformities
,”
Clin. Orthop. Relat. Res.
,
199
, pp.
72
80
.10.1097/00003086-198510000-00011
12.
McKELLOP
,
H. A.
,
Sigholm
,
G.
,
Redfern
,
F. C.
,
Doyle
,
B.
,
Sarmiento
,
A.
, and
Luck Sr
,
J.
,
1991
, “
The Effect of Simulated Fracture-Angulations of the Tibia on Cartilage Pressures in the Knee Joint
,”
JBJS
,
73
(
9
), pp.
1382
1391
.10.2106/00004623-199173090-00014
13.
Weinberg
,
D. S.
,
Park
,
P. J.
, and
Liu
,
R. W.
,
2016
, “
Association Between Tibial Malunion Deformity Parameters and Degenerative Hip and Knee Disease
,”
J. Orthop. Trauma
,
30
(
9
), pp.
510
515
.10.1097/BOT.0000000000000603
14.
Van der Schoot
,
D.
,
Den Outer
,
A.
,
Bode
,
P.
,
Obermann
,
W.
, and
Van Vugt
,
A.
,
1996
, “
Degenerative Changes at the Knee and Ankle Related to Malunion of Tibial Fractures: 15-Year Follow-Up of 88 Patients
,”
J. Bone Jt. Surg. Br. Vol.
,
78-B
(
5
), pp.
722
725
.10.1302/0301-620X.78B5.0780722
15.
Cristofolini
,
L.
, and
Viceconti
,
M.
,
2000
, “
Mechanical Validation of Whole Bone Composite Tibia Models
,”
J. Biomech.
,
33
(
3
), pp.
279
288
.10.1016/S0021-9290(99)00186-4
16.
Quenneville
,
C.
,
Greeley
,
G.
, and
Dunning
,
C.
,
2010
, “
Evaluation of Synthetic Composite Tibias for Fracture Testing Using Impact Loads
,”
Proc. Inst. Mech. Eng., Part H
,
224
(
10
), pp.
1195
1199
.10.1243/09544119JEIM736
17.
Francisco
,
A. C.
,
Nightingale
,
R. W.
,
Guilak
,
F.
,
Glisson
,
R. R.
, and
Garrett Jr
,
W. E.
,
2000
, “
Comparison of Soccer Shin Guards in Preventing Tibia Fracture
,”
Am. J. Sports Med.
,
28
(
2
), pp.
227
233
.10.1177/03635465000280021401
18.
Ali
,
A. M.
,
Saleh
,
M.
,
Bolongaro
,
S.
, and
Yang
,
L.
,
2006
, “
Experimental Model of Tibial Plateau Fracture for Biomechanical Testing
,”
J. Biomech.
,
39
(
7
), pp.
1355
1360
.10.1016/j.jbiomech.2005.03.022
19.
Quenneville
,
C. E.
,
Greeley
,
G. S.
, and
Dunning
,
C. E.
,
2010
, “
Evaluation of Synthetic Composite Tibias for Fracture Testing
,”
ASME
Paper No. SBC2010-19274.10.1115/SBC2010-19274
20.
Ionescu
,
I.
,
Conway
,
T.
,
Schonning
,
A.
,
Almutairi
,
M.
, and
Nicholson
,
D. W.
,
2003
, “
Solid Modeling and Static Finite Element Analysis of the Human Tibia
,”
Summer Bioengineering Conference
, Key Biscayne, FL
, June 25–29, p.
25
.https://www2.tulane.edu/~sbc2003/pdfdocs/0889.PDF
21.
Perillo-Marcone
,
A.
,
Barrett
,
D.
, and
Taylor
,
M.
,
2000
, “
The Importance of Tibial Alignment: Finite Element Analysis of Tibial Malalignment
,”
J. Arthroplasty
,
15
(
8
), pp.
1020
1027
.10.1054/arth.2000.17941
22.
Wong
,
C.
,
Mikkelsen
,
P.
,
Hansen
,
L. B.
,
Darvann
,
T.
, and
Gebuhr
,
P.
,
2010
, “
Finite Element Analysis of Tibial Fractures
,”
Dan. Med. Bull.
,
57
(
5
), p.
A4148
.https://pubmed.ncbi.nlm.nih.gov/20441715/#:~:text=The%20data%20consisted%20of%2021%2C219,and%20indicated%20relevant%20fracture%20patterns
23.
MacGinnis
,
M.
,
Chu
,
H.
,
Youssef
,
G.
,
Wu
,
K. W.
,
Machado
,
A. W.
, and
Moon
,
W.
,
2014
, “
The Effects of Micro-Implant Assisted Rapid Palatal Expansion (MARPE) on the Nasomaxillary Complex—A Finite Element Method (FEM) Analysis
,”
Prog. Orthod.
,
15
(
1
), pp.
1
15
.http://www.progressinorthodontics.com/content/15/1/52
24.
Moon
,
W.
,
Wu
,
K. W.
,
MacGinnis
,
M.
,
Sung
,
J.
,
Chu
,
H.
,
Youssef
,
G.
, and
Machado
,
A.
,
2015
, “
The Efficacy of Maxillary Protraction Protocols With the Micro-Implant-Assisted Rapid Palatal Expander (MARPE) and the Novel N2 Mini-Implant—A Finite Element Study
,”
Prog. Orthod.
,
16
(
1
), pp.
1
14
.10.1186/s40510-015-0083-z
25.
Gonzalez
,
J.
,
Nacy
,
S.
, and
Youssef
,
G.
,
2020
, “
Finite Element Analysis of Human Skull Bone Adaptation to Mechanical Loading
,”
Comput. Methods Biomech. Biomed. Eng.
,
24
(
7
), pp.
753
764
.10.1080/10255842.2020.1850703
26.
Travascio
,
F.
,
Buller
,
L. T.
,
Milne
,
E.
, and
Latta
,
L.
,
2021
, “
Mechanical Performance and Implications on Bone Healing of Different Screw Configurations for Plate Fixation of Diaphyseal Tibia Fractures: A Computational Study
,”
Eur. J. Orthop. Surg. Traumatol.
,
31
(
1
), pp.
121
130
.10.1007/s00590-020-02749-5
27.
Wang
,
Y.
,
Qi
,
E.
,
Zhang
,
X.
,
Xue
,
L.
,
Wang
,
L.
, and
Tian
,
J.
,
2021
, “
A Finite Element Analysis of Relationship Between Fracture, Implant and Tibial Tunnel
,”
Sci. Rep.
,
11
(
1
), p.
1781
.10.1038/s41598-021-81401-6
28.
Chan
,
D. S.
,
Nayak
,
A. N.
,
Blaisdell
,
G.
,
James
,
C. R.
,
Denard
,
A.
,
Miles
,
J.
, and
Santoni
,
B. G.
,
2015
, “
Effect of Distal Interlocking Screw Number and Position After Intramedullary Nailing of Distal Tibial Fractures: A Biomechanical Study Simulating Immediate Weight-Bearing
,”
J. Orthop. Trauma
,
29
(
2
), pp.
98
104
.10.1097/BOT.0000000000000195
29.
Cullen
,
A. B.
,
Curtiss
,
S.
, and
Lee
,
M. A.
,
2009
, “
Biomechanical Comparison of Polyaxial and Uniaxial Locking Plate Fixation in a Proximal Tibial Gap Model
,”
J. Orthop. Trauma
,
23
(
7
), pp.
507
513
.10.1097/QAI.0b013e3181a25368
30.
Gueorguiev
,
B.
,
Wähnert
,
D.
,
Albrecht
,
D.
,
Ockert
,
B.
,
Windolf
,
M.
, and
Schwieger
,
K.
,
2011
, “
Effect on Dynamic Mechanical Stability and Interfragmentary Movement of Angle-Stable Locking of Intramedullary Nails in Unstable Distal Tibia Fractures: A Biomechanical Study
,”
J. Trauma Acute Care Surg.
,
70
(
2
), pp.
358
365
.10.1097/TA.0b013e3181dbaaaf
31.
Youssef
,
G.
,
2021
,
Applied Mechanics of Polymers: Properties, Processing, and Behavior
,
Elsevier
,
Amsterdam, The Netherlands
.
32.
Cleveland
,
R. B.
,
Cleveland
,
W. S.
,
McRae
,
J. E.
, and
Terpenning
,
I.
,
1990
, “
STL: A Seasonal-Trend Decomposition Procedure Based on Loess
,”
J. Off. Stat.
, 6(1), pp.
3
73
.https://www.wessa.net/download/stl.pdf
33.
Finlay
,
J. B.
,
Bourne
,
R. B.
,
Kraemer
,
W. J.
,
Moroz
,
T. K.
, and
Rorabeck
,
C. H.
,
1989
, “
Stiffness of Bone Underlying the Tibial Plateaus of Osteoarthritic and Normal Knees
,”
Clin. Orthop. Relat. Res.
,
247
(
&NA
), pp.
193
201
.10.1097/00003086-198910000-00029
34.
Kemper
,
A.
,
McNally
,
C.
,
Kennedy
,
E.
,
Manoogian
,
S.
, and
Duma
,
S.
,
2007
, “
The Material Properties of Human Tibia Cortical Bone in Tension and Compression: Implications for the Tibia Index
,”
Proceedings of the 20th Enhanced Safety of Vehicles Conference
,
Center for Injury Biomechanics
,
Blacksburg, VA
, June 18–21, Paper No. 07–0470.https://www-esv.nhtsa.dot.gov/Proceedings/20/07-0470-O.pdf
35.
Schneider
,
C. A.
,
Rasband
,
W. S.
, and
Eliceiri
,
K. W.
,
2012
, “
NIH Image to ImageJ: 25 Years of Image Analysis
,”
Nat. Methods
,
9
(
7
), pp.
671
675
.10.1038/nmeth.2089
36.
Morrison
,
J. B.
,
1970
, “
The Mechanics of the Knee Joint in Relation to Normal Walking
,”
J. Biomech.
,
3
(
1
), pp.
51
61
.10.1016/0021-9290(70)90050-3
37.
Padua
,
D. A.
,
Bell
,
D. R.
, and
Clark
,
M. A.
,
2012
, “
Neuromuscular Characteristics of Individuals Displaying Excessive Medial Knee Displacement
,”
J Athl. Train.
,
47
(
5
), pp.
525
536
.10.4085/1062-6050-47.5.10
38.
Vincent
,
K. R.
,
Conrad
,
B. P.
,
Fregly
,
B. J.
, and
Vincent
,
H. K.
,
2012
, “
The Pathophysiology of Osteoarthritis: A Mechanical Perspective on the Knee Joint
,”
PM&R
,
4
(
5
), pp.
S3
S9
.10.1016/j.pmrj.2012.01.020
You do not currently have access to this content.