Abstract

Cervical remodeling is critical for a healthy pregnancy. Premature tissue changes can lead to preterm birth (PTB), and the absence of remodeling can lead to post-term birth, causing significant morbidity. Comprehensive characterization of cervical material properties is necessary to uncover the mechanisms behind abnormal cervical softening. Quantifying cervical material properties during gestation is challenging in humans. Thus, a nonhuman primate (NHP) model is employed for this study. In this study, cervical tissue samples were collected from Rhesus macaques before pregnancy and at three gestational time points. Indentation and tension mechanical tests were conducted, coupled with digital image correlation (DIC), constitutive material modeling, and inverse finite element analysis (IFEA) to characterize the equilibrium material response of the macaque cervix during pregnancy. Results show, as gestation progresses: (1) the cervical fiber network becomes more extensible (nonpregnant versus pregnant locking stretch: 2.03 ± 1.09 versus 2.99 ± 1.39) and less stiff (nonpregnant versus pregnant initial stiffness: 272 ± 252 kPa versus 43 ± 43 kPa); (2) the ground substance compressibility does not change much (nonpregnant versus pregnant bulk modulus: 1.37 ± 0.82 kPa versus 2.81 ± 2.81 kPa); (3) fiber network dispersion increases, moving from aligned to randomly oriented (nonpregnant versus pregnant concentration coefficient: 1.03 ± 0.46 versus 0.50 ± 0.20); and (4) the largest change in fiber stiffness and dispersion happen during the second trimester. These results, for the first time, reveal the remodeling process of a nonhuman primate cervix and its distinct regimes throughout the entire pregnancy.

References

1.
Li
,
Q.
,
Reeves
,
M.
,
Owen
,
J.
, and
Keith
,
L. G.
,
2015
, “
Precocious Cervical Ripening as a Screening Target to Predict Spontaneous Preterm Delivery Among Asymptomatic Singleton Pregnancies: A Systematic Review
,”
Am. J. Obstet. Gynecol.
,
212
(
2
), pp.
145
156
.10.1016/j.ajog.2014.07.003
2.
Liu
,
L.
,
Oza
,
S.
,
Hogan
,
D.
,
Chu
,
Y.
,
Perin
,
J.
,
Zhu
,
J.
,
Lawn
,
J. E.
,
Cousens
,
S.
,
Mathers
,
C.
, and
Black
,
R. E.
,
2016
, “
Global, Regional, and National Causes of Under-5 Mortality in 2000–15: An Updated Systematic Analysis With Implications for the Sustainable Development Goals
,”
Lancet
,
388
(
10063
), pp.
3027
3035
.10.1016/S0140-6736(16)31593-8
3.
Rosado-Mendez
,
I. M.
,
Carlson
,
L. C.
,
Woo
,
K. M.
,
Santoso
,
A. P.
,
Guerrero
,
Q. W.
,
Palmeri
,
M. L.
,
Feltovich
,
H.
, and
Hall
,
T. J.
,
2018
, “
Quantitative Assessment of Cervical Softening During Pregnancy in the Rhesus Macaque With Shear Wave Elasticity Imaging
,”
Phys. Med. Biol.
,
63
(
8
), p.
085016
.10.1088/1361-6560/aab532
4.
Feltovich
,
H.
,
Hall
,
T. J.
, and
Berghella
,
V.
,
2012
, “
Beyond Cervical Length: Emerging Technologies for Assessing the Pregnant Cervix
,”
Am. J. Obstet. Gynecol.
,
207
(
5
), pp.
345
354
.10.1016/j.ajog.2012.05.015
5.
Casteleyn
,
C.
, and
Bakker
,
J.
,
2021
, “
Anatomy of the Rhesus Monkey (Macaca mulatta): The Essentials for the Biomedical Researcher
,”
Veterinary Medicine and Science
,
IntechOpen
,
London, UK
.
6.
Van Esch
,
E.
,
Cline
,
J. M.
,
Buse
,
E.
,
Wood
,
C. E.
,
de Rijk
,
E. P. C. T.
, and
Weinbauer
,
G. F.
,
2008
, “
Summary Comparison of Female Reproductive System in Human and the Cynomolgus Monkey (Macaca fascicularis)
,”
Toxicol. Pathol.
,
36
(
7_suppl
), pp.
171S
172S
.10.1177/0192623308327415
7.
Myers
,
K. M.
,
Socrate
,
S.
,
Paskaleva
,
A.
, and
House
,
M.
,
2010
, “
A Study of the Anisotropy and Tension/Compression Behavior of Human Cervical Tissue
,”
ASME J. Biomech. Eng.
,
132
(
2
), p.
021003
.10.1115/1.3197847
8.
Shi
,
L.
,
Hu
,
L.
,
Lee
,
N.
,
Fang
,
S.
, and
Myers
,
K.
,
2022
, “
Three-Dimensional Anisotropic Hyperelastic Constitutive Model Describing the Mechanical Response of Human and Mouse Cervix
,”
Acta Biomater.
,
150
, pp.
277
294
.10.1016/j.actbio.2022.07.062
9.
Myers
,
K.
,
Socrate
,
S.
,
Tzeranis
,
D.
, and
House
,
M.
,
2009
, “
Changes in the Biochemical Constituents and Morphologic Appearance of the Human Cervical Stroma During Pregnancy
,”
Eur. J. Obstet. Gynecol. Reprod. Biol.
,
144
, pp.
S82
S89
.10.1016/j.ejogrb.2009.02.008
10.
Yoshida
,
K.
,
Jayyosi
,
C.
,
Lee
,
N.
,
Mahendroo
,
M.
, and
Myers
,
K. M.
,
2019
, “
Mechanics of Cervical Remodelling: Insights From Rodent Models of Pregnancy
,”
Interface Focus
,
9
(
5
), p.
20190026
.10.1098/rsfs.2019.0026
11.
Moghaddam
,
A. O.
,
Lin
,
Z.
,
Sivaguru
,
M.
,
Phillips
,
H.
,
McFarlin
,
B.
,
Toussaint
,
K.
, and
Johnson
,
A. W.
,
2022
, “
Heterogeneous Microstructural Changes of the Cervix Influence Cervical Funneling
,”
Acta Biomater.
,
140
, pp.
434
445
.10.1016/j.actbio.2021.12.025
12.
Barnum
,
C. E.
,
Shetye
,
S. S.
,
Fazelinia
,
H.
,
Garcia
,
B. A.
,
Fang
,
S.
,
Alzamora
,
M.
,
Li
,
H.
, et al.,
2022
, “
The Non-Pregnant and Pregnant Human Cervix: A Systematic Proteomic Analysis
,”
Reprod. Sci.
,
29
(
5
), pp.
1542
1559
.10.1007/s43032-022-00892-4
13.
Yao
,
W.
,
Gan
,
Y.
,
Myers
,
K. M.
,
Vink
,
J. Y.
,
Wapner
,
R. J.
, and
Hendon
,
C. P.
,
2016
, “
Collagen Fiber Orientation and Dispersion in the Upper Cervix of Non-Pregnant and Pregnant Women
,”
Plos One
,
11
(
11
), p.
e0166709
.10.1371/journal.pone.0166709
14.
Fernandez
,
M.
,
House
,
M.
,
Jambawalikar
,
S.
,
Zork
,
N.
,
Vink
,
J.
,
Wapner
,
R.
, and
Myers
,
K.
,
2016
, “
Investigating the Mechanical Function of the Cervix During Pregnancy Using Finite Element Models Derived From High-Resolution 3D MRI
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
4
), pp.
404
417
.10.1080/10255842.2015.1033163
15.
Westervelt
,
A. R.
,
Fernandez
,
M.
,
House
,
M.
,
Vink
,
J.
,
Nhan-Chang
,
C.-L.
,
Wapner
,
R.
, and
Myers
,
K. M.
,
2017
, “
A Parameterized Ultrasound-Based Finite Element Analysis of the Mechanical Environment of Pregnancy
,”
ASME J. Biomech. Eng.
,
139
(
5
), p.
051004
.10.1115/1.4036259
16.
Shi
,
L.
,
Yao
,
W.
,
Gan
,
Y.
,
Zhao
,
L. Y.
,
Eugene McKee
,
W.
,
Vink
,
J.
,
Wapner
,
R. J.
,
Hendon
,
C. P.
, and
Myers
,
K.
,
2019
, “
Anisotropic Material Characterization of Human Cervix Tissue Based on Indentation and Inverse Finite Element Analysis
,”
ASME J. Biomech. Eng.
,
141
(
9
), p.
091017
.10.1115/1.4043977
17.
Shi
,
L.
, and
Myers
,
K.
,
2023
, “
A Finite Porous-Viscoelastic Model Capturing Mechanical Behavior of Human Cervix Under Multi-Step Spherical Indentation
,”
J. Mech. Behav. Biomed. Mater.
,
143
, p.
105875
.10.1016/j.jmbbm.2023.105875
18.
Leppert
,
P. C.
, and
Yeh Yu
,
S.
,
1994
, “
Apoptosis in the Cervix of Pregnant Rats in Association With Cervical Softening
,”
Gynecol. Obstet. Invest.
,
37
(
3
), pp.
150
154
.10.1159/000292546
19.
Gillies
,
A. R.
, and
Lieber
,
R. L.
,
2011
, “
Structure and Function of the Skeletal Muscle Extracellular Matrix: Skeletal Muscle ECM
,”
Muscle Nerve
,
44
(
3
), pp.
318
331
.10.1002/mus.22094
20.
Fang
,
S.
,
McLean
,
J.
,
Shi
,
L.
,
Vink
,
J.-S. Y.
,
Hendon
,
C. P.
, and
Myers
,
K. M.
,
2021
, “
Anisotropic Mechanical Properties of the Human Uterus Measured by Spherical Indentation
,”
Ann. Biomed. Eng.
,
49
(
8
), pp.
1923
1942
.10.1007/s10439-021-02769-0
21.
Nallasamy
,
S.
,
Palacios
,
H. H.
,
Setlem
,
R.
,
Colon Caraballo
,
M.
,
Li
,
K.
,
Cao
,
E.
,
Shankaran
,
M.
,
Hellerstein
,
M.
, and
Mahendroo
,
M.
,
2021
, “
Transcriptome and Proteome Dynamics of Cervical Remodeling in the Mouse During Pregnancy
,”
Biol. Reprod.
,
105
(
5
), pp.
1257
1271
.10.1093/biolre/ioab144
22.
Schreier
,
H.
,
Orteu
,
J.-J.
, and
Sutton
,
M. A.
,
2009
,
Image Correlation for Shape, Motion and Deformation Measurements
,
Springer US
,
Boston, MA
.
23.
Kelly
,
T.-A. N.
,
Roach
,
B. L.
,
Weidner
,
Z. D.
,
Mackenzie-Smith
,
C. R.
,
O'Connell
,
G. D.
,
Lima
,
E. G.
,
Stoker
,
A. M.
,
Cook
,
J. L.
,
Ateshian
,
G. A.
, and
Hung
,
C. T.
,
2013
, “
Tissue-Engineered Articular Cartilage Exhibits Tension–Compression Nonlinearity Reminiscent of the Native Cartilage
,”
J. Biomech.
,
46
(
11
), pp.
1784
1791
.10.1016/j.jbiomech.2013.05.017
24.
Miller
,
K.
, and
Chinzei
,
K.
,
2002
, “
Mechanical Properties of Brain Tissue in Tension
,”
J. Biomech.
,
35
(
4
), pp.
483
490
.10.1016/S0021-9290(01)00234-2
25.
Gao
,
Z.
,
Lister
,
K.
, and
Desai
,
J. P.
,
2010
, “
Constitutive Modeling of Liver Tissue: Experiment and Theory
,”
Ann. Biomed. Eng.
,
38
(
2
), pp.
505
516
.10.1007/s10439-009-9812-0
26.
Vink
,
J.
, and
Feltovich
,
H.
,
2016
, “
Cervical Etiology of Spontaneous Preterm Birth
,”
Seminars Fetal Neonatal Medicine
, Elsevier Inc., Amsterdam, The Netherlands, Vol.
21
(
2
), pp.
106
112
.10.1016/j.siny.2015.12.009
27.
Zhao
,
Y.
,
Staudenmayer
,
J.
,
Coull
,
B. A.
, and
Wand
,
M. P.
,
2006
, “
General Design Bayesian Generalized Linear Mixed Models
,”
Stat. Sci.
,
21
(
1
), pp.
35
51
.10.1214/088342306000000015
28.
Yao
,
W.
,
Yoshida
,
K.
,
Fernandez
,
M.
,
Vink
,
J.
,
Wapner
,
R. J.
,
Ananth
,
C. V.
,
Oyen
,
M. L.
, and
Myers
,
K. M.
,
2014
, “
Measuring the Compressive Viscoelastic Mechanical Properties of Human Cervical Tissue Using Indentation
,”
J. Mech. Behav. Biomed. Mater.
,
34
, pp.
18
26
.10.1016/j.jmbbm.2014.01.016
29.
Kruschke
,
J. K.
,
2018
, “
Rejecting or Accepting Parameter Values in Bayesian Estimation
,”
Adv. Methods Pract. Psychol. Sci.
,
1
(
2
), pp.
270
280
.10.1177/2515245918771304
30.
Jeffreys
,
H.
,
1998
,
The Theory of Probability
,
OUP Oxford
,
Oxford, UK
.
31.
Myers
,
K.
,
Paskaleva
,
A.
,
House
,
M.
, and
Socrate
,
S.
,
2008
, “
Mechanical and Biochemical Properties of Human Cervical Tissue
,”
Acta Biomater.
,
4
(
1
), pp.
104
116
.10.1016/j.actbio.2007.04.009
32.
Timmons
,
B.
,
Akins
,
M.
, and
Mahendroo
,
M.
,
2010
, “
Cervical Remodeling During Pregnancy and Parturition
,”
Trends Endocrinol. Metab.
,
21
(
6
), pp.
353
361
.10.1016/j.tem.2010.01.011
33.
Yoshida
,
K.
,
Jiang
,
H.
,
Kim
,
M.
,
Vink
,
J.
,
Cremers
,
S.
,
Paik
,
D.
,
Wapner
,
R.
,
Mahendroo
,
M.
, and
Myers
,
K.
,
2014
, “
Quantitative Evaluation of Collagen Crosslinks and Corresponding Tensile Mechanical Properties in Mouse Cervical Tissue During Normal Pregnancy
,”
PLoS ONE
,
9
(
11
), p.
e112391
.10.1371/journal.pone.0112391
34.
Yoshida
,
K.
,
Mahendroo
,
M.
,
Vink
,
J.
,
Wapner
,
R.
, and
Myers
,
K.
,
2016
, “
Material Properties of Mouse Cervical Tissue in Normal Gestation
,”
Acta Biomater.
,
36
, pp.
195
209
.10.1016/j.actbio.2016.03.005
35.
Fang
,
S.
, and
Myers
,
K. M.
,
2024
, “
Effect of Freeze-Thaw Cycle on Human Uterine Mechanical Properties Measured by Spherical Indentation
,” Columbia University Academic Commons.10.7916/453v-sm53
36.
Mallett
,
K. F.
, and
Arruda
,
E. M.
,
2017
, “
Digital Image Correlation-Aided Mechanical Characterization of the Anteromedial and Posterolateral Bundles of the Anterior Cruciate Ligament
,”
Acta Biomater.
,
56
, pp.
44
57
.10.1016/j.actbio.2017.03.045
37.
Chung
,
B. S.
,
Jeon
,
C.-Y.
,
Huh
,
J.-W.
,
Jeong
,
K.-J.
,
Har
,
D.
,
Kwack
,
K.-S.
, and
Park
,
J. S.
,
2019
, “
Rise of the Visible Monkey: Sectioned Images of Rhesus Monkey
,”
J. Korean Medical Sci.
,
34
(
8
), p.
e66
.10.3346/jkms.2019.34.e66
38.
Cuadros
,
A.
,
1971
, “
New Findings Relating to the Gross and Microscopic Morphology of the Uterine Cervix in the Rhesus Monkey
,”
Fertil. Steril.
,
22
(
2
), pp.
138
143
.10.1016/S0015-0282(16)38050-5
39.
Böl
,
M.
,
Ehret
,
A. E.
,
Leichsenring
,
K.
,
Weichert
,
C.
, and
Kruse
,
R.
,
2014
, “
On the Anisotropy of Skeletal Muscle Tissue Under Compression
,”
Acta Biomater.
,
10
(
7
), pp.
3225
3234
.10.1016/j.actbio.2014.03.003
40.
Depalle
,
B.
,
Qin
,
Z.
,
Shefelbine
,
S. J.
, and
Buehler
,
M. J.
,
2015
, “
Influence of Cross-Link Structure, Density and Mechanical Properties in the Mesoscale Deformation Mechanisms of Collagen Fibrils
,”
J. Mech. Behav. Biomed. Mater.
,
52
, pp.
1
13
.10.1016/j.jmbbm.2014.07.008
You do not currently have access to this content.