Abstract

Ossification of the posterior longitudinal ligament (OPLL) has been identified as an important cause of cervical myelopathy. However, the biomechanical mechanism between the OPLL type and the clinical characteristics of myelopathy remains unclear. The aim of this study was to evaluate the effect of different types of OPLL on the dynamic biomechanical response of the spinal cord. A three-dimensional finite element model of the fluid–structure interaction of the cervical spine with spinal cord was established and validated. The spinal cord stress and strain, cervical range of motion (ROM) in different types of OPLL models were predicted during dynamic flexion and extension activity. Different types of OPLL models showed varying degrees of increase in stress and strain under the process of flexion and extension, and there was a surge toward the end of extension. Larger spinal cord stress was observed in segmental OPLL. For continuous and mixed types of OPLL, the adjacent segments of OPLL showed a dramatic increase in ROM, while the ROM of affected segments was limited. As a dynamic factor, flexion and extension of the cervical spine play an amplifying role in OPLL-related myelopathy, while appropriate spine motion is safe and permitted. Segmental OPLL patients are more concerned about the spinal cord injury induced by large stress, and patients with continuous OPLL should be noted to progressive injuries of adjacent level.

References

1.
Boody
,
B. S.
,
Lendner
,
M.
, and
Vaccaro
,
A. R.
,
2019
, “
Ossification of the Posterior Longitudinal Ligament in the Cervical Spine: A Review
,”
Int. Orthop.
,
43
(
4
), pp.
797
805
.10.1007/s00264-018-4106-5
2.
Lee
,
N.
,
Ji
,
G. Y.
,
Shin
,
H. C.
,
Ha
,
Y.
,
Jang
,
J. W.
, and
Shin
,
D. A.
,
2015
, “
Usefulness of 3-Dimensional Measurement of Ossification of the Posterior Longitudinal Ligament (OPLL) in Patients With OPLL-Induced Myelopathy
,”
Spine (Phila Pa 1976)
,
40
(
19
), pp.
1479
1486
.10.1097/BRS.0000000000001072
3.
Tsuyama
,
N.
,
1984
, “
Ossification of the Posterior Longitudinal Ligament of the Spine
,”
Clin. Orthop. Relat. Res.
,
184
, pp.
71
84
.10.1097/00003086-198404000-00010
4.
Kalb
,
S.
,
Martirosyan
,
N. L.
,
Perez-Orribo
,
L.
,
Kalani
,
M. Y. S.
, and
Theodore
,
N.
,
2011
, “
Analysis of Demographics, Risk Factors, Clinical Presentation, and Surgical Treatment Modalities for the Ossified Posterior Longitudinal Ligament
,”
Neurosurg. Focus
,
30
(
3
), p.
E11
.10.3171/2010.12.FOCUS10265
5.
Jeong
,
H. S.
,
Park
,
C.
,
Kim
,
K. S.
,
Kim
,
J. H.
, and
Jeon
,
C. H.
,
2021
, “
Clinical Feasibility of MR-Generated Synthetic CT Images of the Cervical Spine: Diagnostic Performance for Detection of OPLL and Comparison of CT Number
,”
Medicine (Baltimore)
,
100
(
18
), p.
e25800
.10.1097/MD.0000000000025800
6.
Ito
,
K.
,
Imagama
,
S.
,
Ito
,
K.
,
Ito
,
Z.
,
Ando
,
K.
,
Kobayashi
,
K.
,
Hida
,
T.
, et al.,
2017
, “
MRI Signal Intensity Classification in Cervical Ossification of the Posterior Longitudinal Ligament: Predictor of Surgical Outcomes
,”
Spine (Phila Pa 1976)
,
42
(
2
), pp.
E98
E103
.10.1097/BRS.0000000000001717
7.
Fujimori
,
T.
,
Iwasaki
,
M.
,
Nagamoto
,
Y.
,
Kashii
,
M.
,
Ishii
,
T.
,
Sakaura
,
H.
,
Sugamoto
,
K.
, and
Yoshikawa
,
H.
,
2012
, “
Three-Dimensional Measurement of Intervertebral Range of Motion in Ossification of the Posterior Longitudinal Ligament: Are There Mobile Segments in the Continuous Type?
J. Neurosurg. Spine
,
17
(
1
), pp.
74
81
.10.3171/2012.3.SPINE111083
8.
Miura
,
J.
,
Doita
,
M.
,
Miyata
,
K.
,
Marui
,
T.
,
Nishida
,
K.
,
Fujii
,
M.
, and
Kurosaka
,
M.
,
2009
, “
Dynamic Evaluation of the Spinal Cord in Patients With Cervical Spondylotic Myelopathy Using a Kinematic Magnetic Resonance Imaging Technique
,”
J. Spinal Disord. Tech.
,
22
(
1
), pp.
8
13
.10.1097/BSD.0b013e31815f2556
9.
Mattucci
,
S.
,
Speidel
,
J.
,
Liu
,
J.
,
Kwon
,
B. K.
,
Tetzlaff
,
W.
, and
Oxland
,
T. R.
,
2019
, “
Basic Biomechanics of Spinal Cord Injury - How Injuries Happen in People and How Animal Models Have Informed Our Understanding
,”
Clin. Biomech. (Bristol, Avon)
,
64
, pp.
58
68
.10.1016/j.clinbiomech.2018.03.020
10.
Kato
,
Y.
,
Kanchiku
,
T.
,
Imajo
,
Y.
,
Kimura
,
K.
,
Ichihara
,
K.
,
Kawano
,
S.
,
Hamanaka
,
D.
,
Yaji
,
K.
, and
Taguchi
,
T.
,
2010
, “
Biomechanical Study of the Effect of Degree of Static Compression of the Spinal Cord in Ossification of the Posterior Longitudinal Ligament
,”
J. Neurosurg. Spine
,
12
(
3
), pp.
301
305
.10.3171/2009.9.SPINE09314
11.
Kim
,
Y. H.
,
Khuyagbaatar
,
B.
, and
Kim
,
K.
,
2013
, “
Biomechanical Effects of Spinal Cord Compression Due to Ossification of Posterior Longitudinal Ligament and Ligamentum Flavum: A Finite Element Analysis
,”
Med. Eng. Phys.
,
35
(
9
), pp.
1266
1271
.10.1016/j.medengphy.2013.01.006
12.
Khuyagbaatar
,
B.
,
Kim
,
K.
,
Park
,
W. M.
, and
Kim
,
Y. H.
,
2015
, “
Influence of Sagittal and Axial Types of Ossification of Posterior Longitudinal Ligament on Mechanical Stress in Cervical Spinal Cord: A Finite Element Analysis
,”
Clin. Biomech. (Bristol, Avon)
,
30
(
10
), pp.
1133
1139
.10.1016/j.clinbiomech.2015.08.013
13.
Nishida
,
N.
,
Kanchiku
,
T.
,
Kato
,
Y.
,
Imajo
,
Y.
,
Yoshida
,
Y.
,
Kawano
,
S.
, and
Taguchi
,
T.
,
2015
, “
Cervical Ossification of the Posterior Longitudinal Ligament: Biomechanical Analysis of the Influence of Static and Dynamic Factors
,”
J. Spinal Cord. Med.
,
38
(
5
), pp.
593
598
.10.1179/2045772314Y.0000000221
14.
Khuyagbaatar
,
B.
,
Kim
,
K.
,
Park
,
W. M.
,
Lee
,
S.
, and
Kim
,
Y. H.
,
2017
, “
Increased Stress and Strain on the Spinal Cord Due to Ossification of the Posterior Longitudinal Ligament in the Cervical Spine Under Flexion After Laminectomy
,”
Proc. Inst. Mech. Eng. H
,
231
(
9
), pp.
898
906
.10.1177/0954411917718222
15.
Zhang
,
Q. H.
,
Teo
,
E. C.
, and
Ng
,
H. W.
,
2005
, “
Development and Validation of a CO-C7 FE Complex for Biomechanical Study
,”
ASME J. Biomech. Eng.
,
127
(
5
), pp.
729
735
.10.1115/1.1992527
16.
Sayit
,
E.
,
Daubs
,
M. D.
,
Aghdasi
,
B.
,
Montgomery
,
S. R.
,
Inoue
,
H.
,
Wang
,
C. J.
,
Wang
,
B. J.
,
Phan
,
K. H.
, and
Scott
,
T. P.
,
2013
, “
Dynamic Changes of the Ligamentum Flavum in the Cervical Spine Assessed With Kinetic Magnetic Resonance Imaging
,”
Global Spine J
,
3
(
2
), pp.
69
73
.10.1055/s-0033-1337121
17.
Kwon
,
S.
,
Suh
,
S.-W.
,
Kim
,
D.
,
Rhyu
,
I. J.
,
Yu
,
H.
,
Han
,
S. W.
, and
Hong
,
J.-Y.
,
2018
, “
Analysis of Dural Sac Thickness in the Human Cervical Spine
,”
Anat. Sci. Int.
,
93
(
2
), pp.
284
290
.10.1007/s12565-017-0412-z
18.
Holsheimer
,
J.
,
den Boer
,
J. A.
,
Struijk
,
J. J.
, and
Rozeboom
,
A. R.
,
1994
, “
MR Assessment of the Normal Position of the Spinal Cord in the Spinal Canal
,”
Am. J. Neuroradiol.
,
15
(
5
), pp.
951
959
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8332172/
19.
Ozawa
,
H.
,
Matsumoto
,
T.
,
Ohashi
,
T.
,
Sato
,
M.
, and
Kokubun
,
S.
,
2004
, “
Mechanical Properties and Function of the Spinal Pia Mater
,”
J. Neurosurg. Spine
,
1
(
1
), pp.
122
127
.10.3171/spi.2004.1.1.0122
20.
Ichihara
,
K.
,
Taguchi
,
T.
,
Shimada
,
Y.
,
Sakuramoto
,
I.
,
Kawano
,
S.
, and
Kawai
,
S.
,
2001
, “
Gray Matter of the Bovine Cervical Spinal Cord is Mechanically More Rigid and Fragile Than the White Matter
,”
J. Neurotrauma
,
18
(
3
), pp.
361
367
.10.1089/08977150151071053
21.
Persson
,
C.
,
Summers
,
J.
, and
Hall
,
R. M.
,
2011
, “
The Importance of Fluid-Structure Interaction in Spinal Trauma Models
,”
J. Neurotrauma
,
28
(
1
), pp.
113
125
.10.1089/neu.2010.1332
22.
Brydon
,
H. L.
,
Hayward
,
R.
,
Harkness
,
W.
, and
Bayston
,
R.
,
1995
, “
Physical Properties of Cerebrospinal Fluid of Relevance to Shunt Function—1: The Effect of Protein Upon CSF Viscosity
,”
Br. J. Neurosurg.
,
9
(
5
), pp.
639
644
.10.1080/02688699550040927
23.
Xu
,
M.-L.
,
Zeng
,
H.-Z.
,
Zheng
,
L.-D.
,
Jin
,
C.
,
Zhu
,
S.-J.
,
Yang
,
Y.-T.
,
Cao
,
Y.-T.
,
Zhu
,
R.
, and
Cheng
,
L.-M.
,
2022
, “
Effect of Degenerative Factors on Cervical Spinal Cord During Flexion and Extension: A Dynamic Finite Element Analysis
,”
Biomech. Model. Mechanobiol.
,
21
(
6
), pp.
1743
1759
.10.1007/s10237-022-01617-x
24.
Margulies
,
S. S.
, and
Meaney
,
D. F.
,
2016
, “
Chapter B5 Brain Tissues
,”
Handbook of Biomaterial Properties
,
W.
Murphy
,
J.
Black
, and
G.
Hastings
, eds.,
Springer New York
,
New York
, pp.
67
76
.
25.
Ruan
,
J. S.
,
Khalil
,
T.
, and
King
,
A. I.
,
1991
, “
Human Head Dynamic Response to Side Impact by Finite Element Modeling
,”
ASME J. Biomech. Eng.
,
113
(
3
), pp.
276
283
.10.1115/1.2894885
26.
Czyz
,
M.
,
Scigala
,
K.
,
Jarmundowicz
,
W.
, and
Beidziński
,
R.
,
2008
, “
The Biomechanical Analysis of the Traumatic Cervical Spinal Cord Injury Using Finite Element Approach
,”
Acta Bioeng. Biomech.
,
10
(
1
), pp.
43
54
.https://pubmed.ncbi.nlm.nih.gov/18634353/
27.
Bloomfield
,
I. G.
,
Johnston
,
I. H.
, and
Bilston
,
L. E.
,
1998
, “
Effects of Proteins, Blood Cells and Glucose on the Viscosity of Cerebrospinal Fluid
,”
Pediatr. Neurosurg.
,
28
(
5
), pp.
246
251
.10.1159/000028659
28.
Richardson
,
M. G.
, and
Wissler
,
R. N.
,
1996
, “
Density of Lumbar Cerebrospinal Fluid in Pregnant and Nonpregnant Humans
,”
Anesthesiology
,
85
(
2
), pp.
326
330
.10.1097/00000542-199608000-00014
29.
Mihara
,
A.
,
Nishida
,
N.
,
Jiang
,
F.
,
Ohgi
,
J.
,
Imajo
,
Y.
,
Suzuki
,
H.
,
Funaba
,
M.
,
Yamagata
,
H.
,
Chen
,
X.
, and
Sakai
,
T.
,
2021
, “
Tensile Test of Human Lumbar Ligamentum Flavum: Age-Related Changes of Stiffness
,”
Appl. Sci.
,
11
(
8
), p.
3337
.10.3390/app11083337
30.
Lowrance
,
E. W.
, and
Latimer
,
H. B.
,
1967
, “
Weights and Variability of Components of the Human Vertebral Column
,”
Anat. Rec.
,
159
(
1
), pp.
83
88
.10.1002/ar.1091590112
31.
Singh
,
A.
,
Lu
,
Y.
,
Chen
,
C.
, and
Cavanaugh
,
J. M.
,
2006
, “
Mechanical Properties of Spinal Nerve Roots Subjected to Tension at Different Strain Rates
,”
J. Biomech.
,
39
(
9
), pp.
1669
1676
.10.1016/j.jbiomech.2005.04.023
32.
Hong-Wan
,
N.
,
Ee-Chon
,
T.
, and
Qing-Hang
,
Z.
,
2004
, “
Biomechanical Effects of C2-C7 Intersegmental Stability Due to Laminectomy With Unilateral and Bilateral Facetectomy
,”
Spine (Phila Pa 1976)
,
29
(
16
), pp.
1737
1745
.10.1097/01.BRS.0000134574.36487.EB
33.
Yoganandan
,
N.
,
Kumaresan
,
S.
, and
Pintar
,
F. A.
,
2000
, “
Geometric and Mechanical Properties of Human Cervical Spine Ligaments
,”
ASME J. Biomech. Eng.
,
122
(
6
), pp.
623
629
.10.1115/1.1322034
34.
Yoganandan
,
N.
,
Kumaresan
,
S.
, and
Pintar
,
F. A.
,
2001
, “
Biomechanics of the Cervical Spine Part 2. Cervical Spine Soft Tissue Responses and Biomechanical Modeling
,”
Clin. Biomech. (Bristol, Avon)
,
16
(
1
), pp.
1
27
.10.1016/S0268-0033(00)00074-7
35.
Polak
,
K.
,
Czyż
,
M.
,
Ścigała
,
K.
,
Jarmundowicz
,
W.
, and
Będziński
,
R.
,
2014
, “
Biomechanical Characteristics of the Porcine Denticulate Ligament in Different Vertebral Levels of the Cervical Spine-Preliminary Results of an Experimental Study
,”
J. Mech. Behav. Biomed. Mater.
,
34
, pp.
165
170
.10.1016/j.jmbbm.2014.02.010
36.
Shim
,
V. P. W.
,
Liu
,
J. F.
, and
Lee
,
V. S.
,
2006
, “
A Technique for Dynamic Tensile Testing of Human Cervical Spine Ligaments
,”
Exp. Mech.
,
46
(
1
), pp.
77
89
.10.1007/s11340-006-5865-2
37.
Persson
,
C.
,
McLure
,
S. W. D.
,
Summers
,
J.
, and
Hall
,
R. M.
,
2009
, “
The Effect of Bone Fragment Size and Cerebrospinal Fluid on Spinal Cord Deformation During Trauma: An Ex Vivo Study
,”
J. Neurosurg. Spine
,
10
(
4
), pp.
315
323
.10.3171/2009.1.SPINE08286
38.
Jones
,
C. F.
,
Kroeker
,
S. G.
,
Cripton
,
P. A.
, and
Hall
,
R. M.
,
2008
, “
The Effect of Cerebrospinal Fluid on the Biomechanics of Spinal Cord: An Ex Vivo Bovine Model Using Bovine and Physical Surrogate Spinal Cord
,”
Spine (Phila Pa 1976)
,
33
(
17
), pp.
E580
E588
.10.1097/BRS.0b013e31817ecc57
39.
Puglisi
,
F.
,
Ridi
,
R.
,
Cecchi
,
F.
,
Bonelli
,
A.
, and
Ferrari
,
R.
,
2004
, “
Segmental Vertebral Motion in the Assessment of Neck Range of Motion in Whiplash Patients
,”
Int. J. Legal Med.
,
118
(
4
), pp.
235
239
.10.1007/s00414-004-0462-3
40.
Matsunaga
,
S.
, and
Sakou
,
T.
,
2012
, “
Ossification of the Posterior Longitudinal Ligament of the Cervical Spine: Etiology and Natural History
,”
Spine (Phila Pa 1976)
,
37
(
5
), pp.
E309
E314
.10.1097/BRS.0b013e318241ad33
41.
Funaba
,
M.
,
Imajo
,
Y.
,
Suzuki
,
H.
,
Nishida
,
N.
,
Nagao
,
Y.
,
Sakamoto
,
T.
,
Fujimoto
,
K.
, and
Sakai
,
T.
,
2021
, “
The Associations Between Radiological and Neurological Findings of Degenerative Cervical Myelopathy: Radiological Analysis Based on Kinematic CT Myelography and Evoked Potentials of the Spinal Cord
,”
J. Neurosurg. Spine
,
35
(
3
), pp.
308
319
.10.3171/2020.11.SPINE201626
42.
Koyanagi
,
I.
,
Iwasaki
,
Y.
,
Hida
,
K.
,
Imamura
,
H.
,
Fujimoto
,
S.
, and
Akino
,
M.
,
2003
, “
Acute Cervical Cord Injury Associated With Ossification of the Posterior Longitudinal Ligament
,”
Neurosurgery
,
53
(
4
), pp.
887
892
.10.1227/01.NEU.0000083590.84053.CC
43.
Hashizume
,
Y.
,
Iijima
,
S.
,
Kishimoto
,
H.
, and
Yanagi
,
T.
,
1984
, “
Pathology of Spinal Cord Lesions Caused by Ossification of the Posterior Longitudinal Ligament
,”
Acta Neuropathol.
,
63
(
2
), pp.
123
130
.10.1007/BF00697194
44.
Bilston
,
L. E.
, and
Thibault
,
L. E.
,
1995
, “
The Mechanical Properties of the "Human Cervical Spinal Cord In Vitro
,”
Ann. Biomed. Eng.
,
24
(
S1
), pp.
67
74
.10.1007/BF02770996
45.
Cheng
,
S.
,
Clarke
,
E. C.
, and
Bilston
,
L. E.
,
2008
, “
Rheological Properties of the Tissues of the Central Nervous System: A Review
,”
Med. Eng. Phys.
,
30
(
10
), pp.
1318
1337
.10.1016/j.medengphy.2008.06.003
46.
Inufusa
,
A.
,
An
,
H. S.
,
Lim
,
T. H.
,
Hasegawa
,
T.
,
Haughton
,
V. M.
, and
Nowicki
,
B. H.
,
1996
, “
Anatomic Changes of the Spinal Canal and Intervertebral Foramen Associated With Flexion-Extension Movement
,”
Spine (Phila Pa 1976)
,
21
(
21
), pp.
2412
2420
.10.1097/00007632-199611010-00002
47.
Taylor
,
A. R.
, and
Blackwood
,
W.
,
1948
, “
Paraplegia in Hyperextension Cervical Injuries With Normal Radiographic Appearances
,”
J. Bone Jt. Surg. Br.
,
30-B
(
2
), pp.
245
248
.10.1302/0301-620X.30B2.245
48.
Machino
,
M.
,
Yukawa
,
Y.
,
Ito
,
K.
,
Nakashima
,
H.
, and
Kato
,
F.
,
2011
, “
Dynamic Changes in Dural Sac and Spinal Cord Cross-Sectional Area in Patients With Cervical Spondylotic Myelopathy: Cervical Spine
,”
Spine (Phila Pa 1976)
,
36
(
5
), pp.
399
403
.10.1097/BRS.0b013e3181d2510b
49.
Mochizuki
,
M.
,
Aiba
,
A.
,
Hashimoto
,
M.
,
Fujiyoshi
,
T.
, and
Yamazaki
,
M.
,
2009
, “
Cervical Myelopathy in Patients With Ossification of the Posterior Longitudinal Ligament
,”
J. Neurosurg. Spine
,
10
(
2
), pp.
122
128
.10.3171/2008.10.SPI08480
50.
Hirai
,
T.
,
Yoshii
,
T.
,
Ushio
,
S.
,
Mori
,
K.
,
Maki
,
S.
,
Katsumi
,
K.
,
Nagoshi
,
N.
, et al.,
2020
, “
Clinical Characteristics in Patients With Ossification of the Posterior Longitudinal Ligament: A Prospective Multi-Institutional Cross-Sectional Study
,”
Sci. Rep.
,
10
(
1
), p.
5532
.10.1038/s41598-020-62278-3
51.
Khuyagbaatar
,
B.
,
Kim
,
K.
,
Purevsuren
,
T.
,
Lee
,
S.-H.
, and
Kim
,
Y. H.
,
2018
, “
Biomechanical Effects on Cervical Spinal Cord and Nerve Root Following Laminoplasty for Ossification of the Posterior Longitudinal Ligament in the Cervical Spine: A Comparison Between Open-Door and Double-Door Laminoplasty Using Finite Element Analysis
,”
ASME J. Biomech. Eng.
,
140
(
7
), p.
071006
.10.1115/1.4039826
52.
Khuyagbaatar
,
B.
,
Kim
,
K.
,
Park
,
W. M.
, and
Kim
,
Y. H.
,
2017
, “
Biomechanical Investigation of Post-Operative C5 Palsy Due to Ossification of the Posterior Longitudinal Ligament in Different Types of Cervical Spinal Alignment
,”
J. Biomech.
,
57
, pp.
54
61
.10.1016/j.jbiomech.2017.03.019
You do not currently have access to this content.