Abstract

Skin is a complex tissue whose biomechanical properties are generally understood in terms of an incompressible material whose microstructure undergoes affine deformations. A growing number of experiments, however, have demonstrated that skin has a high Poisson's ratio, substantially decreases in volume during uniaxial tensile loading, and demonstrates collagen fiber kinematics that are not affine with local deformation. In order to better understand the mechanical basis for these properties, we constructed multiscale mechanical models (MSM) of mouse skin based on microstructural multiphoton microscopy imaging of the dermal microstructure acquired during mechanical testing. Three models that spanned the cases of highly aligned, moderately aligned, and nearly random fiber networks were examined and compared to the data acquired from uniaxially stretched skin. Our results demonstrate that MSMs consisting of networks of matched fiber organization can predict the biomechanical behavior of mouse skin, including the large decrease in tissue volume and nonaffine fiber kinematics observed under uniaxial tension.

References

1.
Kanitakis
,
J.
,
2002
, “
Anatomy, Histology and Immunohistochemistry of Normal Human Skin
,”
Eur. J. Dermatol.
,
12
(
4
), pp.
390
399
.https://pubmed.ncbi.nlm.nih.gov/12095893/
2.
Yousef
,
H.
,
Alhajj
,
M.
, and
Sharma
,
S.
,
2020
, “
Anatomy, Skin (Integument), Epidermis
,”
StatPearls
,
Treasure Island, FL
.
3.
Phillip
,
J. M.
,
Aifuwa
,
I.
,
Walston
,
J.
, and
Wirtz
,
D.
,
2015
, “
The Mechanobiology of Aging
,”
Annu. Rev. Biomed. Eng.
,
17
(
1
), pp.
113
141
.10.1146/annurev-bioeng-071114-040829
4.
Pissarenko
,
A.
, and
Meyers
,
M. A.
,
2020
, “
The Materials Science of Skin: Analysis, Characterization, and Modeling
,”
Prog. Mater. Sci.
,
110
, p.
100634
.10.1016/j.pmatsci.2019.100634
5.
Blair
,
M. J. W. A. E.
,
Balachandran
,
K.
, and
Quinn
,
K. P.
,
2019
, “
Fast-Acquisition Quantitative Polarized Light Imaging for Mechanical Testing of Collagenous Tissues
,”
Biomedical Engineering Society Meeting
,
Philadelphia, PA
, Oct. 15–19.
6.
Woessner
,
A. E.
,
Jones
,
J. D.
,
Witt
,
N. J.
,
Sander
,
E. A.
, and
Quinn
,
K. P.
,
2021
, “
Three-Dimensional Quantification of Collagen Microstructure During Tensile Mechanical Loading of Skin
,”
Front. Bioeng. Biotechnol.
,
9
, Article ID: 642866.10.3389/fbioe.2021.642866
7.
Tracy
,
L. E.
,
Minasian
,
R. A.
, and
Caterson
,
E. J.
,
2016
, “
Extracellular Matrix and Dermal Fibroblast Function in the Healing Wound
,”
Adv. Wound Care (New Rochelle)
,
5
(
3
), pp.
119
136
.10.1089/wound.2014.0561
8.
Langer
,
K.
,
1978
, “
On the Anatomy and Physiology of the Skin. II. Skin Tension, Presented at the Meeting of 27th November 1861
,”
Br. J. Plast. Surg.
,
31
(
2
), pp.
93
106
.10.1016/S0007-1226(78)90056-5
9.
Agache
,
P. G.
,
Monneur
,
C.
,
Leveque
,
J. L.
, and
De Rigal
,
J.
,
1980
, “
Mechanical Properties and Young's Modulus of Human Skin In Vivo
,”
Arch. Dermatol. Res.
,
269
(
3
), pp.
221
232
.10.1007/BF00406415
10.
Lanir
,
Y.
,
1976
, “
Biaxial Stress-Relaxation in Skin
,”
Ann. Biomed. Eng.
,
4
(
3
), pp.
250
270
.10.1007/BF02584518
11.
Ní Annaidh
,
A.
,
Bruyère
,
K.
,
Destrade
,
M.
,
Gilchrist
,
M. D.
, and
Otténio
,
M.
,
2012
, “
Characterization of the Anisotropic Mechanical Properties of Excised Human Skin
,”
J. Mech. Behav. Biomed. Mater.
,
5
(
1
), pp.
139
148
.10.1016/j.jmbbm.2011.08.016
12.
Buganza-Tepole
,
A.
,
Steinberg
,
J. P.
,
Kuhl
,
E.
, and
Gosain
,
A. K.
,
2014
, “
Application of Finite Element Modeling to Optimize Flap Design With Tissue Expansion
,”
Plast. Reconstr. Surg.
,
134
(
4
), pp.
785
792
.10.1097/PRS.0000000000000553
13.
Fung
,
Y. C.
,
2011
,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer
,
New York
.
14.
Tepole
,
A. B.
,
Gosain
,
A. K.
, and
Kuhl
,
E.
,
2014
, “
Computational Modeling of Skin: Using Stress Profiles as Predictor for Tissue Necrosis in Reconstructive Surgery
,”
Comput. Struct.
,
143
, pp.
32
39
.10.1016/j.compstruc.2014.07.004
15.
Zollner
,
A. M.
,
Buganza Tepole
,
A.
, and
Kuhl
,
E.
,
2012
, “
On the Biomechanics and Mechanobiology of Growing Skin
,”
J. Theor. Biol.
,
297
, pp.
166
175
.10.1016/j.jtbi.2011.12.022
16.
Lynch
,
B.
,
Bonod-Bidaud
,
C.
,
Ducourthial
,
G.
,
Affagard
,
J. S.
,
Bancelin
,
S.
,
Psilodimitrakopoulos
,
S.
,
Ruggiero
,
F.
,
Allain
,
J. M.
, and
Schanne-Klein
,
M. C.
,
2017
, “
How Aging Impacts Skin Biomechanics: A Multiscale Study in Mice
,”
Sci. Rep.
,
7
(
1
), p.
13750
.10.1038/s41598-017-13150-4
17.
Minns
,
R. J.
,
Soden
,
P. D.
, and
Jackson
,
D. S.
,
1973
, “
The Role of the Fibrous Components and Ground Substance in the Mechanical Properties of Biological Tissues: A Preliminary Investigation
,”
J. Biomech.
,
6
(
2
), pp.
153
165
.10.1016/0021-9290(73)90084-5
18.
Blair
,
M. J.
,
Jones
,
J. D.
,
Woessner
,
A. E.
, and
Quinn
,
K. P.
,
2020
, “
Skin Structure-Function Relationships and the Wound Healing Response to Intrinsic Aging
,”
Adv. Wound Care (New Rochelle)
,
9
(
3
), pp.
127
143
.10.1089/wound.2019.1021
19.
Haydont
,
V.
,
Bernard
,
B. A.
, and
Fortunel
,
N. O.
,
2019
, “
Age-Related Evolutions of the Dermis: Clinical Signs, Fibroblast and Extracellular Matrix Dynamics
,”
Mech. Ageing Dev.
,
177
, pp.
150
156
.10.1016/j.mad.2018.03.006
20.
Limbert
,
G.
,
2017
, “
Mathematical and Computational Modelling of Skin Biophysics: A Review
,”
Proc. Math. Phys. Eng. Sci.
,
473
(
2203
), p.
20170257
.10.1098/rspa.2017.0257
21.
Joodaki
,
H.
, and
Panzer
,
M. B.
,
2018
, “
Skin Mechanical Properties and Modeling: A Review
,”
Proc. Inst. Mech. Eng. H
,
232
(
4
), pp.
323
343
.10.1177/0954411918759801
22.
Wahlsten
,
A.
,
Pensalfini
,
M.
,
Stracuzzi
,
A.
,
Restivo
,
G.
,
Hopf
,
R.
, and
Mazza
,
E.
,
2019
, “
On the Compressibility and Poroelasticity of Human and Murine Skin
,”
Biomech. Model. Mechanobiol.
,
18
(
4
), pp.
1079
1093
.10.1007/s10237-019-01129-1
23.
Pissarenko
,
A.
,
Yang
,
W.
,
Quan
,
H.
,
Brown
,
K. A.
,
Williams
,
A.
,
Proud
,
W. G.
, and
Meyers
,
M. A.
,
2019
, “
Tensile Behavior and Structural Characterization of Pig Dermis
,”
Acta Biomater.
,
86
, pp.
77
95
.10.1016/j.actbio.2019.01.023
24.
Lees
,
C.
,
Vincent
,
J. F.
, and
Hillerton
,
J. E.
,
1991
, “
Poisson's Ratio in Skin
,”
Biomed. Mater. Eng.
,
1
(
1
), pp.
19
23
.10.3233/BME-1991-1104
25.
Ehret
,
A. E.
,
Bircher
,
K.
,
Stracuzzi
,
A.
,
Marina
,
V.
,
Zundel
,
M.
, and
Mazza
,
E.
,
2017
, “
Inverse Poroelasticity as a Fundamental Mechanism in Biomechanics and Mechanobiology
,”
Nat. Commun.
,
8
(
1
), p.
1002
.10.1038/s41467-017-00801-3
26.
Albanna
,
M. Z.
, and
Holmes
,
J. H.
,
2016
,
Skin Tissue Engineering and Regenerative Medicine
,
Elsevier/AP
,
London; San Diego, CA
.
27.
Krieg
,
T.
, and
Aumailley
,
M.
,
2011
, “
The Extracellular Matrix of the Dermis: Flexible Structures With Dynamic Functions
,”
Exp. Dermatol.
,
20
(
8
), pp.
689
695
.10.1111/j.1600-0625.2011.01313.x
28.
Lanir
,
Y.
,
1983
, “
Constitutive Equations for Fibrous Connective Tissues
,”
J. Biomech.
,
16
(
1
), pp.
1
12
.10.1016/0021-9290(83)90041-6
29.
Flynn
,
C.
,
Taberner
,
A.
, and
Nielsen
,
P.
,
2011
, “
Modeling the Mechanical Response of In Vivo Human Skin Under a Rich Set of Deformations
,”
Ann. Biomed. Eng.
,
39
(
7
), pp.
1935
1946
.10.1007/s10439-011-0292-7
30.
Bischoff
,
J. E.
,
Arruda
,
E. M.
, and
Grosh
,
K.
,
2000
, “
Finite Element Modeling of Human Skin Using an Isotropic, Nonlinear Elastic Constitutive Model
,”
J. Biomech.
,
33
(
6
), pp.
645
652
.10.1016/S0021-9290(00)00018-X
31.
Belkoff
,
S. M.
, and
Haut
,
R. C.
,
1991
, “
A Structural Model Used to Evaluate the Changing Microstructure of Maturing Rat Skin
,”
J. Biomech.
,
24
(
8
), pp.
711
720
.10.1016/0021-9290(91)90335-K
32.
Holzapfel
,
G. A.
, and
Ogden
,
R. W.
,
2016
,
Biomechanics: Trends in Modeling and Simulation
,
Springer
,
Berlin Heidelberg, New York
.
33.
Dumitrica
,
T.
,
2010
,
Trends in Computational Nanomechanics: Transcending Length and Time Scales
,
Springer
,
Dordrecht; New York
.
34.
Limbert
,
G.
,
2019
, “
Constitutive Modelling of Skin Mechanics
,”
Skin Biophysics
, pp.
19
76
.10.1007/978-3-030-13279-8_2
35.
Jor
,
J. W.
,
Parker
,
M. D.
,
Taberner
,
A. J.
,
Nash
,
M. P.
, and
Nielsen
,
P. M.
,
2013
, “
Computational and Experimental Characterization of Skin Mechanics: Identifying Current Challenges and Future Directions
,”
Wiley Interdiscip. Rev. Syst. Biol. Med.
,
5
(
5
), pp.
539
556
.10.1002/wsbm.1228
36.
Benítez
,
J. M.
, and
Montáns
,
F. J.
,
2017
, “
The Mechanical Behavior of Skin: Structures and Models for the Finite Element Analysis
,”
Comput. Struct.
,
190
, pp.
75
107
.10.1016/j.compstruc.2017.05.003
37.
Sander
,
E. A.
,
Stylianopoulos
,
T.
,
Tranquillo
,
R. T.
, and
Barocas
,
V. H.
,
2009
, “
Image-Based Multiscale Modeling Predicts Tissue-Level and Network-Level Fiber Reorganization in Stretched Cell-Compacted Collagen Gels
,”
Proc. Natl. Acad. Sci. U. S. A.
,
106
(
42
), pp.
17675
17680
.10.1073/pnas.0903716106
38.
Sander
,
E. A.
,
Barocas
,
V. H.
, and
Tranquillo
,
R. T.
,
2011
, “
Initial Fiber Alignment Pattern Alters Extracellular Matrix Synthesis in Fibroblast-Populated Fibrin Gel Cruciforms and Correlates With Predicted Tension
,”
Ann. Biomed. Eng.
,
39
(
2
), pp.
714
729
.10.1007/s10439-010-0192-2
39.
Ban
,
E.
,
Wang
,
H.
,
Franklin
,
J. M.
,
Liphardt
,
J. T.
,
Janmey
,
P. A.
, and
Shenoy
,
V. B.
,
2019
, “
Strong Triaxial Coupling and Anomalous Poisson Effect in Collagen Networks
,”
Proc. Natl. Acad. Sci. U. S. A.
,
116
(
14
), pp.
6790
6799
.10.1073/pnas.1815659116
40.
De Jesus
,
A. M.
,
Aghvami
,
M.
, and
Sander
,
E. A.
,
2016
, “
A Combined In Vitro Imaging and Multi-Scale Modeling System for Studying the Role of Cell Matrix Interactions in Cutaneous Wound Healing
,”
PLoS One
,
11
(
2
), p.
e0148254
.10.1371/journal.pone.0148254
41.
Hadi
,
M. F.
, and
Barocas
,
V. H.
,
2013
, “
Microscale Fiber Network Alignment Affects Macroscale Failure Behavior in Simulated Collagen Tissue Analogs
,”
ASME J. Biomech. Eng.
,
135
(
2
), p. 021026.10.1115/1.4023411
42.
Hadi
,
M. F.
,
Sander
,
E. A.
, and
Barocas
,
V. H.
,
2012
, “
Multiscale Model Predicts Tissue-Level Failure From Collagen Fiber-Level Damage
,”
ASME J. Biomech. Eng.
,
134
(
9
), p.
091005
.10.1115/1.4007097
43.
Korenczuk
,
C. E.
,
Dhume
,
R. Y.
,
Liao
,
K.
, and
Barocas
,
V. H.
,
2019
, “
Ex Vivo Mechanical Tests and Multiscale Computational Modeling Highlight the Importance of Intramural Shear Stress in Ascending Thoracic Aortic Aneurysms
,”
ASME J. Biomech. Eng.
, 141(12), p. 121010.10.1115/1.4045270
44.
Shah
,
S. B.
,
Witzenburg
,
C.
,
Hadi
,
M. F.
,
Wagner
,
H. P.
,
Goodrich
,
J. M.
,
Alford
,
P. W.
, and
Barocas
,
V. H.
,
2014
, “
Prefailure and Failure Mechanics of the Porcine Ascending Thoracic Aorta: Experiments and a Multiscale Model
,”
ASME J. Biomech. Eng.
,
136
(
2
), p.
021028
.10.1115/1.4026443
45.
Stylianopoulos
,
T.
, and
Barocas
,
V. H.
,
2007
, “
Multiscale, Structure-Based Modeling for the Elastic Mechanical Behavior of Arterial Walls
,”
ASME J. Biomech. Eng.
,
129
(
4
), pp.
611
618
.10.1115/1.2746387
46.
Bircher
,
K.
,
Ehret
,
A. E.
, and
Mazza
,
E.
,
2017
, “
Microstructure Based Prediction of the Deformation Behavior of Soft Collagenous Membranes
,”
Soft Matter
,
13
(
30
), pp.
5107
5116
.10.1039/C7SM00101K
47.
Bircher
,
K.
,
Zundel
,
M.
,
Pensalfini
,
M.
,
Ehret
,
A. E.
, and
Mazza
,
E.
,
2019
, “
Publisher Correction: Tear Resistance of Soft Collagenous Tissues
,”
Nat. Commun.
,
10
(
1
), p.
2435
.10.1038/s41467-019-10560-y
48.
Lake
,
S. P.
,
Hadi
,
M. F.
,
Lai
,
V. K.
, and
Barocas
,
V. H.
,
2012
, “
Mechanics of a Fiber Network Within a Non-Fibrillar Matrix: Model and Comparison With Collagen-Agarose Co-Gels
,”
Ann. Biomed. Eng.
,
40
(
10
), pp.
2111
2121
.10.1007/s10439-012-0584-6
49.
Mauri
,
A.
,
Hopf
,
R.
,
Ehret
,
A. E.
,
Picu
,
C. R.
, and
Mazza
,
E.
,
2016
, “
A Discrete Network Model to Represent the Deformation Behavior of Human Amnion
,”
J. Mech. Behav. Biomed. Mater.
,
58
, pp.
45
56
.10.1016/j.jmbbm.2015.11.009
50.
Sachs
,
D.
,
Wahlsten
,
A.
,
Kozerke
,
S.
,
Restivo
,
G.
, and
Mazza
,
E.
,
2021
, “
A Biphasic Multilayer Computational Model of Human Skin
,”
Biomech. Model. Mechanobiol.
,
20
(
3
), pp.
969
982
.10.1007/s10237-021-01424-w
51.
Kassab
,
G. S.
,
An
,
G.
,
Sander
,
E. A.
,
Miga
,
M. I.
,
Guccione
,
J. M.
,
Ji
,
S.
, and
Vodovotz
,
Y.
,
2016
, “
Augmenting Surgery Via Multi-Scale Modeling and Translational Systems Biology in the Era of Precision Medicine: A Multidisciplinary Perspective
,”
Ann. Biomed. Eng.
,
44
(
9
), pp.
2611
2625
.10.1007/s10439-016-1596-4
52.
Sander
,
E. A.
,
Lynch
,
K. A.
, and
Boyce
,
S. T.
,
2014
, “
Development of the Mechanical Properties of Engineered Skin Substitutes After Grafting to Full-Thickness Wounds
,”
ASME J. Biomech. Eng.
,
136
(
5
), p.
051008
.10.1115/1.4026290
53.
Quinn
,
K. P.
, and
Winkelstein
,
B. A.
,
2008
, “
Altered Collagen Fiber Kinematics Define the Onset of Localized Ligament Damage During Loading
,”
J. Appl. Physiol. (1985)
,
105
(
6
), pp.
1881
1888
.10.1152/japplphysiol.90792.2008
54.
Woessner
,
A. E.
,
McGee
,
J. D.
,
Jones
,
J. D.
, and
Quinn
,
K. P.
,
2019
, “
Characterizing Differences in the Collagen Fiber Organization of Skin Wounds Using Quantitative Polarized Light Imaging
,”
Wound Repair Regen.
,
27
(
6
), pp.
711
714
.10.1111/wrr.12758
55.
Liu
,
Z.
,
Pouli
,
D.
,
Sood
,
D.
,
Sundarakrishnan
,
A.
,
Hui Mingalone
,
C. K.
,
Arendt
,
L. M.
,
Alonzo
,
C.
,
Quinn
,
K. P.
,
Kuperwasser
,
C.
,
Zeng
,
L.
,
Schnelldorfer
,
T.
,
Kaplan
,
D. L.
, and
Georgakoudi
,
I.
,
2017
, “
Automated Quantification of Three-Dimensional Organization of Fiber-Like Structures in Biological Tissues
,”
Biomaterials
,
116
, pp.
34
47
.10.1016/j.biomaterials.2016.11.041
56.
Liu
,
Z.
,
Quinn
,
K. P.
,
Speroni
,
L.
,
Arendt
,
L.
,
Kuperwasser
,
C.
,
Sonnenschein
,
C.
,
Soto
,
A. M.
, and
Georgakoudi
,
I.
,
2015
, “
Rapid Three-Dimensional Quantification of Voxel-Wise Collagen Fiber Orientation
,”
Biomed. Opt. Exp.
,
6
(
7
), pp.
2294
2310
.10.1364/BOE.6.002294
57.
Sander
,
E. A.
,
Tranquillo
,
R. T.
, and
Barocas
,
V. H.
,
2009
, “
Image-Based Multiscale Structural Models of Fibrous Engineered Tissues
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, Minneapolis, MN, Sept. 3–6, pp.
4270
4272
. 10.1109/IEMBS.2009.5334586
58.
Chandran
,
P. L.
, and
Barocas
,
V. H.
,
2006
, “
Affine Versus Non-Affine Fibril Kinematics in Collagen Networks: Theoretical Studies of Network Behavior
,”
ASME J. Biomech. Eng.
,
128
(
2
), pp.
259
270
.10.1115/1.2165699
59.
Stylianopoulos
,
T.
, and
Barocas
,
V. H.
,
2007
, “
Volume-Averaging Theory for the Study of the Mechanics of Collagen Networks
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
31–32
), pp.
2981
2990
.10.1016/j.cma.2006.06.019
60.
Flynn
,
C.
,
Taberner
,
A. J.
,
Nielsen
,
P. M.
, and
Fels
,
S.
,
2013
, “
Simulating the Three-Dimensional Deformation of In Vivo Facial Skin
,”
J. Mech. Behav. Biomed. Mater.
,
28
, pp.
484
494
.10.1016/j.jmbbm.2013.03.004
61.
Ni Annaidh
,
A.
,
Bruyere
,
K.
,
Destrade
,
M.
,
Gilchrist
,
M. D.
,
Maurini
,
C.
,
Ottenio
,
M.
, and
Saccomandi
,
G.
,
2012
, “
Automated Estimation of Collagen Fibre Dispersion in the Dermis and Its Contribution to the Anisotropic Behaviour of Skin
,”
Ann. Biomed. Eng.
,
40
(
8
), pp.
1666
1678
.10.1007/s10439-012-0542-3
62.
Tepole
,
A. B.
,
Gosain
,
A. K.
, and
Kuhl
,
E.
,
2012
, “
Stretching Skin: The Physiological Limit and Beyond
,”
Int. J. Non Linear Mech.
,
47
(
8
), pp.
938
949
.10.1016/j.ijnonlinmec.2011.07.006
63.
Bonet
,
J.
, and
Wood
,
R. D.
,
2009
,
Nonlinear Continuum Mechanics for Finite Element Analysis
,
Cambridge University Press
,
Cambridge, UK; New York
.
64.
Zhang
,
S.
,
Zarei
,
V.
,
Winkelstein
,
B. A.
, and
Barocas
,
V. H.
,
2018
, “
Multiscale Mechanics of the Cervical Facet Capsular Ligament, With Particular Emphasis on Anomalous Fiber Realignment Prior to Tissue Failure
,”
Biomech. Model. Mechanobiol.
,
17
(
1
), pp.
133
145
.10.1007/s10237-017-0949-8
65.
Dutov
,
P.
,
Antipova
,
O.
,
Varma
,
S.
,
Orgel
,
J. P.
, and
Schieber
,
J. D.
,
2016
, “
Measurement of Elastic Modulus of Collagen Type I Single Fiber
,”
PLoS One
,
11
(
1
), p.
e0145711
.10.1371/journal.pone.0145711
66.
Jansen
,
K. A.
,
Licup
,
A. J.
,
Sharma
,
A.
,
Rens
,
R.
,
MacKintosh
,
F. C.
, and
Koenderink
,
G. H.
,
2018
, “
The Role of Network Architecture in Collagen Mechanics
,”
Biophys J
,
114
(
11
), pp.
2665
2678
.10.1016/j.bpj.2018.04.043
67.
Yang
,
L.
,
van der Werf
,
K. O.
,
Fitie
,
C. F.
,
Bennink
,
M. L.
,
Dijkstra
,
P. J.
, and
Feijen
,
J.
,
2008
, “
Mechanical Properties of Native and Cross-Linked Type I Collagen Fibrils
,”
Biophys. J.
,
94
(
6
), pp.
2204
2211
.10.1529/biophysj.107.111013
68.
E
,
L.
,
T.H.S
,
V. K.
,
F.P.T
,
B.
,
G.W.M
,
P.
, and
C.W.J
,
O.
,
2013
, “
Large Amplitude Oscillatory Shear Properties of Human Skin
,”
J. Mech. Behav. Biomed. Mater.
,
28
, pp.
462
470
.10.1016/j.jmbbm.2013.01.024
69.
Zahouani
,
H.
,
Pailler-Mattei
,
C.
,
Sohm
,
B.
,
Vargiolu
,
R.
,
Cenizo
,
V.
, and
Debret
,
R.
,
2009
, “
Characterization of the Mechanical Properties of a Dermal Equivalent Compared With Human Skin In Vivo by Indentation and Static Friction Tests
,”
Skin Res. Technol.
,
15
(
1
), pp.
68
76
.10.1111/j.1600-0846.2008.00329.x
70.
Zhang
,
L.
,
Lake
,
S. P.
,
Lai
,
V. K.
,
Picu
,
C. R.
,
Barocas
,
V. H.
, and
Shephard
,
M. S.
,
2013
, “
A Coupled Fiber-Matrix Model Demonstrates Highly Inhomogeneous Microstructural Interactions in Soft Tissues Under Tensile Load
,”
ASME J. Biomech. Eng.
,
135
(
1
), p.
011008
.10.1115/1.4023136
71.
Picu
,
R. C.
,
Deogekar
,
S.
, and
Islam
,
M. R.
,
2018
, “
Poisson's Contraction and Fiber Kinematics in Tissue: Insight From Collagen Network Simulations
,”
ASME J. Biomech. Eng.
,
140
(
2
), p.
021002
.10.1115/1.4038428
72.
Chandran
,
P. L.
,
Stylianopoulos
,
T.
, and
Barocas
,
V. H.
,
2008
, “
Microstructure-Based, Multiscale Modeling for the Mechanical Behavior of Hydrated Fiber Networks
,”
Multiscale Model. Simul.
,
7
(
1
), pp.
22
43
.10.1137/070689504
You do not currently have access to this content.