Abstract

One of the most effective treatments for type 1 and 2 diabetes is the administration of Insulin. Single needle mechanical insulin pumps are heavy and painful. Microneedle-based MEMS drug delivery devices can be an excellent solution for insulin dosing. The stackable structure provides minimum dimensions and the final product can be in the form of a patch that can be applied to any flat area of human skin. The use of microneedle array provides a safe, painless, and robust injection application. The design of positive volumetric insulin pump is a Multiphysics problem where the volumetric changes of the main pump chamber and the pumped fluid are directly coupled. We use a Multiphysics simulation system to investigate the performance of a MEMS-based insulin micropump with a piezoelectric actuator pumping a viscous Newtonian fluid. The model captures the accumulated out-flow, the netflow, or flow fluctuations based on deflection of piezoelectric diaphragm actuator. Different input voltages and different excitation frequencies cause movement of piezoelectric actuator, which moves the diaphragm disk in positive–negative directions thereby inducing discharge pressures at the microneedle array. In this study, we address various aspects of design and simulation of a MEMS-based piezoelectric insulin micropump including polydimethylsiloxane microvalves and microneedle array. We investigate the micropump performance at human skin interfacial pressure to match minimum to maximum delivery targets/requirements for total range of diabetic patient's expected operating parameters. comsolmultiphysics is used for this study.

References

1.
Maillefer
,
D.
, and
van Lintel
,
H.
,
1999
, “
A High-Performance Silicon Micro-Pump for an Implantable Drug Delivery System
,”
Technical Digest, IEEE International MEMS 99 Conference, Twelfth IEEE International Conference on Micro Electro Mechanical Systems
, Orlando, FL, Jan. 21, pp.
541
546
.10.1109/MEMSYS.1999.746886
2.
H. T.
V
.,
Van Lintel
,
H. T. V.
,
F. C. M.
,
van de Pol
., and
Bouwstra
,
A.
,
1998
, “
A Piezoelectric Micro Pump Based on Micromachining of Silicon
,”
Sens. Actuators A
,
1988
(
15
), pp.
153
168
.10.1016/0250-6874(88)87005-7
3.
Maillefer
,
D.
,
Gamper
,
S.
,
Frehner
,
B.
, and
Balmer
,
P.
,
2001
, “
A High-Performance Silicon Micro-Pump for Disposable Drug Delivery Systems
,”
Technical Digest. MEMS 2001, 14th IEEE International Conference on Micro Electro Mechanical Systems
, Interlaken, Switzerland, Jan. 25, pp. 413–417.10.1109/MEMSYS.2001.906566
4.
Ma
,
B.
,
Liu
,
S.
,
Gan
,
Z.
,
Liu
,
G.
,
Cai
,
X.
,
Zhang
,
H.
, and
Yang
,
Z.
,
2006
, “
A PZT Insulin Pump Integrated With a Silicon Micro Needle Array for Transdermal Drug Delivery
,”
Microfluid. Nanofluid.
,
2
(
5
), pp.
417
423
.10.1007/s10404-006-0083-x
5.
UpToDate
,
2015
, “
UpToDate: Evidence-Based Clinical Decision Support
,” Wolters Kluwer, Alphen aan den Rijn, The Netherlands, accessed Apr. 20, 2021, www.uptodate.com/
6.
Wiig
,
H.
, and
Noddeland
,
H.
,
1983
, “
Interstitial Fluid Pressure in Human Skin Measured by Micropuncture and Wick-In-Needle
,”
Scand. J. Clin. Lab. Invest.
,
43
(
3
), pp.
255
260
.10.3109/00365518309168253
7.
L.,
Saggere
,
N. W.
,
Hagood
,
D. C.
,
Roberts
,
H.-Q.
,
Li
,
J. L.
,
Steyn
,
K.
,
Turner
,
J. A.
,
Carretero
,
Yaglioglu
,
Y.-H.
,
Su
,
R.
,
Mlcak
,
S. M.
,
Spearing
,
K. S.
,
Breuer
,
M. A.
, and
Schmidt
,
2001
,
Design, Fabrication, and Testing of a Piezoelectrically Driven High Flow Rate Micro-Pump
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
8.
Olsson
,
A.
,
Stemme
,
G.
, and
Stemme
,
E.
,
1995
, “
A Valve-Less Planar Fluid Pump With Two Pump Chambers
,”
Instrumentation Laboratory, Royal Institute of Technology
, Goteberg, Sweden.
9.
Yangl
,
H.
,
Tsai
,
T.-H.
, and
Hu
,
C.-C.
,
2008
, “
Portable Valve-Less Peristaltic Micro-Pump Design and Fabrication,
Institute of Precision Engineering, National Chung Hsing University
,
Taiwan
.
10.
COMSOL Documentation & Seminars,
2015
, “
Peristaltic Pump Solved With COMSOL Multiphysics 5.1
,”
A Piezoelectric Micropump From COMSOL 5.6 Library
, 2020.
11.
Elabbasi
,
N.
,
Bergstrom
,
J.
, and
Brown
,
S.
, 2011, "
Fluid-Structure Interaction Analysis of a Peristaltic Pump
,"
COMSOL Conference
,
Boston, MA
, Oct. 13–15.https://www.comsol.co.in/paper/download/84013/elabbasi_paper.pdf
12.
Podder
,
P. K.
,
Samajdar
,
D. P.
,
Mallick
,
D.
, and
Bhattacharyya
,
A.
,
2012
, “
Design, Simulation and Study of Micro-Pump, Micro-Valve and Micro-Needle for Biomedical Applications
,”
COMSOL Conference
,
Institute of Radio Physics & Electronics, University of Calcutta
, Bangalore, India, Nov.
2
3
.https://www.comsol.co.in/paper/download/152993/samajdar_paper.pdf
13.
Davis
,
S. P.
,
Martanto
,
W.
,
Allen
,
M. G.
, and
Prausnitz
,
M. R.
,
2005
, “
Hollow Metal Micro-Needles for Insulin Delivery to Diabetic Rats
,”
IEEE Trans. Biomed. Eng.
,
52
(
5
), pp.
909
915
.10.1109/TBME.2005.845240
14.
Zhang
,
P.
,
2005
, “
Micro-Needle Arrays for Drug Delivery and Fluid Extraction
,” Proceedings of the 2005 International Conference on MEMS, NANO and Smart Systems (
ICMENS'05
),
ATIPS Laboratory, ECE, University of Calgary, IEEE
, Banff, AB, Canada, July 24–27, pp.
392
395
.10.1109/ICMENS.2005.71
15.
Chang
,
L.
,
2006
,
Foundations of MEMS
,
Pearson Education
, Upper Saddle River, NJ.
16.
Ruhhammer
,
J.
,
Zens
,
M.
,
Goldschmidtboeing
,
F.
,
Seifert
,
A.
, and
Woias
,
P.
,
2015
, “
Highly Elastic Conductive Polymeric MEMS
,”
Sci. Technol. Adv. Mater.
,
16
(
1
), p.
015003
.10.1088/1468-6996/16/1/015003
17.
Setter
,
N.
,
2005
,
Electroceramic-Based MEMS: Fabrication-Technology and Applications
,
Springer Science-Business Media
, New York.
18.
Ciofani
,
G.
, and
Menciassi
,
A.
eds.,
2012
,
Piezoelectric Nanomaterials for Biomedical Applications
,
Springer-Verlag
,
Berlin Heidelberg, Germany
.
19.
McAllister
,
D. V.
,
Kaushk
,
S.
,
Patel
,
P. N.
,
Mayberry
,
J. L.
,
Allen
,
M. G.
, and
Prausnitz
,
M. R.
,
1999
, “
Microneedles for Transdermal Delivery of Macromolecules
,”
Proceedings of the First Joint BMES/EMBS Conference, 1999 IEEE Engineering in Medicine and Biology 21st Annual Conference and the 1999 Annual Fall Meeting of the Biomedical Engineering Society
, Atlanta, GA, Oct. 13–16, p.
836
.10.1109/IEMBS.1999.803991
20.
Kabata
,
A.
,
Suzuki
,
H.
,
Kishigami
,
Y.
, and
Haga
,
M.
,
2005
, “
Micro System for Injection of Insulin and Monitoring of Glucose Concentration
,” SENSORS, 2005
IEEE
, Irvine, CA, Oct. 30–Nov. 3, p.
4
. 10.1109/ICSENS.2005.1597663
21.
Xu
,
Z.
,
Liu
,
S.
,
Gan
Ma
,
Z. B.
,
Liu
,
G.
,
Cai
,
X.
,
Zhang
,
H.
, and
Yang
,
Z.
,
2006
, “
An Integrated Intelligent Insulin Pump
,”
Seventh International Conference on Electronics Packaging Technology
, IEEE, Shanghai, China, Aug. 26–29, pp.
1
5
.10.1109/ICEPT.2006.359761
22.
Hou
,
Z.
,
Lin
,
C.
, and
Zhang
,
Q.
,
2010
, “
Design of a Smart Transdermal Insulin Drug Delivery System
,”
4th International Conference on Bioinformatics and Biomedical Engineering
, Chengdu, China, June
18
20
.10.1109/ICBBE.2010.5517141
23.
Cruz Félix
,
A. S.
, and
Santiago-Alvarado
,
A.
, March
2014
, “
Physical-Chemical Properties of PDMS Samples Used in Tunable Lenses
,”
Int. J. Eng. Sci. Innov. Technol.
,
3
(
2
), pp.
563
571
. https://www.researchgate.net/publication/261861311_Physical-chemical_properties_of_PDMS_samples_used_in_tunable_lenses
You do not currently have access to this content.