Abstract

Head impact sensors measure head kinematics in sports, and sensor accuracy is crucial for investigating the potential link between repetitive head loading and clinical outcomes. Many validation studies mount sensors to human head surrogates and compare kinematic measures during loading from a linear impactor. These studies are often unable to distinguish intrinsic instrumentation limitations from variability caused by sensor coupling. The aim of the current study was to evaluate intrinsic sensor error in angular velocity in the absence of coupling error for a common head impact sensor. Two Triax SIM-G sensors were rigidly attached to a preclinical rotational injury device and subjected to rotational events to assess sensor reproducibility and accuracy. Peak angular velocities between the SIM-G sensors paired for each test were correlated (R2 > 0.99, y = 1.00x, p < 0.001). SIM-G peak angular velocity correlated with the reference (R2 = 0.96, y = 0.82x, p < 0.001); however, SIM-G underestimated the magnitude by 15.0% ± 1.7% (p < 0.001). SIM-G angular velocity rise time (5% to 100% of peak) correlated with the reference (R2 = 0.97, y = 1.06x, p < 0.001) but exhibited a slower fall time (100% to 5% of peak) by 9.0 ± 3.7 ms (p < 0.001). Assessing sensor performance when rigidly coupled is a crucial first step to interpret on-field SIM-G rotational kinematic data. Further testing in increasing biofidelic conditions is needed to fully characterize error from other sources, such as coupling.

References

1.
Broglio
,
S. P.
,
Schnebel
,
B.
,
Sosnoff
,
J. J.
,
Shin
,
S.
,
Fend
,
X.
,
He
,
X.
, and
Zimmerman
,
J.
,
2010
, “
Biomechanical Properties of Concussions in High School Football
,”
Med. Sci. Sports Exerc.
,
42
(
11
), pp.
2064
2071
.10.1249/MSS.0b013e3181dd9156
2.
Greenwald
,
R. M.
,
Gwin
,
J. T.
,
Chu
,
J. J.
, and
Crisco
,
J. J.
,
2008
, “
Head Impact Severity Measures for Evaluating Mild Traumatic Brain Injury Risk Exposure
,”
Neurosurgery
,
62
(
4
), pp.
789
798
.10.1227/01.neu.0000318162.67472.ad
3.
Miller
,
L. E.
,
Kuo
,
C.
,
Wu
,
L. C.
,
Urban
,
J. E.
,
Camarillo
,
D. B.
, and
Stitzel
,
J. D.
,
2018
, “
Validation of a Custom Instrumented Retainer Form Factor for Measuring Linear and Angular Head Impact Kinematics
,”
ASME J. Biomech. Eng.
,
140
(
5
), p.
054501
.10.1115/1.4039165
4.
Allison
,
M. A.
,
Kang
,
Y. S.
,
Maltese
,
M. R.
,
Bolte
,
J. H.
, and
Arbogast
,
K. B.
,
2015
, “
Measurement of Hybrid III Head Impact Kinematics Using an Accelerometer and Gyroscope System in Ice Hockey Helmets
,”
Ann. Biomed. Eng.
,
43
(
8
), pp.
1896
1906
.10.1007/s10439-014-1197-z
5.
Triax Technologies,
2014
,
Laboratory Validation of the SIM-G Head Impact Sensor
,
Triax Technologies
,
Norwalk, CT
.
6.
Nevins
,
D.
,
Hildenbrand
,
K.
,
Kensrud
,
J.
,
Vasavada
,
A.
, and
Smith
,
L.
,
2018
, “
Laboratory and Field Evaluation of a Small Form Factor Head Impact Sensor in Un-Helmeted Play
,”
Proc. Inst. Mech. Eng. Part P J. Sport. Eng. Technol.
,
232
(
3
), pp.
242
254
.10.1177/1754337117739458
7.
Sandmo
,
S. B.
,
McIntosh
,
A. S.
,
Andersen
,
T. E.
,
Koerte
,
I. K.
, and
Bahr
,
R.
,
2019
, “
Evaluation of an in-Ear Sensor for Quantifying Head Impacts in Youth Soccer
,”
Am. J. Sports Med.
,
47
(
4
), pp.
974
981
.10.1177/0363546519826953
8.
Nevins
,
D.
,
Smith
,
L.
, and
Kensrud
,
J.
,
2015
, “
Laboratory Evaluation of Wireless Head Impact Sensor
,”
Procedia Eng.
,
112
, pp.
175
179
.10.1016/j.proeng.2015.07.195
9.
Tyson
,
A. M.
,
Duma
,
S. M.
, and
Rowson
,
S.
,
2018
, “
Laboratory Evaluation of Low-Cost Wearable Sensors for Measuring Head Impacts in Sports
,”
J. Appl. Biomech.
,
34
(
4
), pp.
320
326
.10.1123/jab.2017-0256
10.
Rich
,
A. M.
,
Filben
,
T. M.
,
Miller
,
L. E.
,
Tomblin
,
B. T.
,
Van Gorkom
,
A. R.
,
Hurst
,
M. A.
,
Barnard
,
R. T.
,
Kohn
,
D. S.
,
Urban
,
J. E.
, and
Stitzel
,
J. D.
,
2019
, “
Development, Validation and Pilot Field Deployment of a Custom Mouthpiece for Head Impact Measurement
,”
Ann. Biomed. Eng.
,
47
(
10
), pp.
2109
2121
. 10.1007/s10439-019-02313-1
11.
Karton
,
C.
,
Oeur
,
R. A.
, and
Hoshizaki
,
T. B.
,
2016
, “
Measurement Accuracy of Head Impact Monitoring Sensor in Sport
,”
34th International Conference of Biomechanics in Sport
, Tsukuba, Japan, July 18–22, p.
3
.https://ojs.ub.uni-konstanz.de/cpa/article/view/6994
12.
Smith
,
D. H.
,
Chen
,
X. H.
,
Xu
,
B. N.
,
McIntosh
,
T. K.
,
Gennarelli
,
T. A.
, and
Meaney
,
D. F.
,
1997
, “
Characterization of Diffuse Axonal Pathology and Selective Hippocampal Damage Following Inertial Brain Trauma in the Pig
,”
J. Neuropathol. Exp. Neurol.
,
56
(
7
), pp.
822
834
.10.1097/00005072-199756070-00009
13.
Meaney
,
D. F.
,
Smith
,
D. H.
,
Shreiber
,
D. I.
,
Bain
,
A. C.
,
Miller
,
R. T.
,
Ross
,
D. T.
, and
Gennarelli
,
T. A.
,
1995
, “
Biomechanical Analysis of Experimental Diffuse Axonal Injury
,”
J. Neurotrauma
,
12
(
4
), pp.
689
694
.10.1089/neu.1995.12.689
14.
Raghupathi
,
R.
, and
Margulies
,
S. S.
,
2002
, “
Traumatic Axonal Injury After Closed Head Injury in the Neonatal Pig
,”
J. Neurotrauma
,
19
(
7
), pp.
843
853
.10.1089/08977150260190438
15.
Cullen
,
D. K.
,
Harris
,
J. P.
,
Browne
,
K. D.
,
Wolf
,
J. A.
,
Duda
,
J. E.
,
Meaney
,
D. F.
,
Margulies
,
S. S.
, and
Smith
,
D. H.
,
2016
, “
A Porcine Model of Traumatic Brain Injury Via Head Rotational Acceleration
,”
Methods Mol. Biol.
,
1462
, pp.
289
324
. 10.1007/978-1-4939-3816-2_17
16.
Wu
,
L. C.
,
Nangia
,
V.
,
Bui
,
K.
,
Hammoor
,
B.
,
Kurt
,
M.
,
Hernandez
,
F.
,
Kuo
,
C.
, and
Camarillo
,
D. B.
,
2016
, “
In Vivo Evaluation of Wearable Head Impact Sensors
,”
Ann. Biomed. Eng.
,
44
(
4
), pp.
1234
1245
.10.1007/s10439-015-1423-3
17.
Rowson
,
S.
,
Brolinson
,
G.
,
Goforth
,
M.
,
Dietter
,
D.
, and
Duma
,
S.
,
2009
, “
Linear and Angular Head Acceleration Measurements in Collegiate Football
,”
ASME J. Biomech. Eng.
,
131
(
6
), p.
061016
.10.1115/1.3130454
18.
Harriss
,
A.
,
Johnson
,
A. M.
,
Walton
,
D. M.
, and
Dickey
,
J. P.
,
2019
, “
Head Impact Magnitudes That Occur From Purposeful Soccer Heading Depend on the Game Scenario and Head Impact Location
,”
Musculoskelet. Sci. Pract.
,
40
, pp.
53
57
.10.1016/j.msksp.2019.01.009
19.
Steenstrup
,
S. E.
,
Mok
,
K.-M.
,
McIntosh
,
A. S.
,
Bahr
,
R.
, and
Krosshaug
,
T.
,
2018
, “
Reconstruction of Head Impacts in FIS World Cup Alpine Skiing
,”
Br. J. Sports Med.
,
52
(
11
), pp.
709
715
.10.1136/bjsports-2017-098050
20.
McIntosh
,
A. S.
,
Patton
,
D. A.
,
Fréchède
,
B.
,
Pierré
,
P. A.
,
Ferry
,
E.
, and
Barthels
,
T.
,
2014
, “
The Biomechanics of Concussion in Unhelmeted Football Players in Australia: A Case-Control Study
,”
BMJ Open
,
4
(
5
), p.
e005078
.10.1136/bmjopen-2014-005078
21.
Oeur
,
R. A.
,
Karton
,
C.
,
Hoshizaki
,
T. B.
, and
Kinetics
,
H.
,
2016
, “
Impact Frequency Validation of Head Impact Sensor Technology for Use in Sport
,”
34th International Conference of Biomechanics in Sport (Figure 1)
, Tsukuba, Japan, July 18–22, p.
4
.https://ojs.ub.uni-konstanz.de/cpa/article/view/6995
22.
Tiernan
,
S.
,
O'Sullivan
,
D.
, and
Byrne
,
G.
,
2018
, “
Repeatability and Reliability Evaluation of a Wireless Head-Band Sensor
,”
Asian J. Kinesiol.
,
20
(
4
), pp.
70
75
.10.15758/ajk.2018.20.4.70
23.
Camarillo
,
D. B.
,
Shull
,
P. B.
,
Mattson
,
J.
,
Shultz
,
R.
, and
Garza
,
D.
,
2013
, “
An Instrumented Mouthguard for Measuring Linear and Angular Head Impact Kinematics in American Football
,”
Ann. Biomed. Eng.
,
41
(
9
), pp.
1939
1949
.10.1007/s10439-013-0801-y
24.
Patton
,
D. A.
,
2016
, “
A Review of Instrumented Equipment to Investigate Head Impacts in Sport
,”
Appl. Bionics Biomech.
,
2016
, pp.
1
16
.10.1155/2016/7049743
25.
Cummiskey
,
B.
,
Schiffmiller
,
D.
,
Talavage
,
T. M.
,
Leverenz
,
L.
,
Meyer
,
J. J.
,
Adams
,
D.
, and
Nauman
,
E. A.
,
2017
, “
Reliability and Accuracy of Helmet-Mounted and Head-Mounted Devices Used to Measure Head Accelerations
,”
Proc. Inst. Mech. Eng. Part P J. Sport. Eng. Technol.
,
231
(
2
), pp.
144
153
.10.1177/1754337116658395
26.
Bussone
,
W. R.
,
Olberding
,
J.
, and
Prange
,
M.
,
2017
, “
Six-Degree-of-Freedom Accelerations: Linear Arrays Compared With Angular Rate Sensors in Impact Events
,”
SAE Int. J. Transp. Saf.
,
5
(
2
), pp.
194
207
.10.4271/2017-01-1465
27.
Cobb
,
B. R.
,
Urban
,
J. E.
,
Davenport
,
E. M.
,
Rowson
,
S.
,
Duma
,
S. M.
,
Maldjian
,
J. A.
,
Whitlow
,
C. T.
,
Powers
,
A. K.
, and
Stitzel
,
J. D.
,
2013
, “
Head Impact Exposure in Youth Football: Elementary School Ages 9-12 Years and the Effect of Practice Structure
,”
Ann. Biomed. Eng.
,
41
(
12
), pp.
2463
2473
.10.1007/s10439-013-0867-6
28.
Zhao
,
W.
, and
Ji
,
S.
,
2017
, “
Brain Strain Uncertainty Due to Shape Variation in and Simplification of Head Angular Velocity Profiles
,”
Biomech. Model. Mechanobiol.
,
16
(
2
), pp.
449
461
.10.1007/s10237-016-0829-7
29.
Broglio
,
S. P.
,
Sosnoff
,
J. J.
,
Shin
,
S.
,
He
,
X.
,
Alcaraz
,
C.
, and
Zimmerman
,
J.
,
2009
, “
Head Impacts During High School Football: A Biomechanical Assessment
,”
J. Athl. Train.
,
44
(
4
), pp.
342
349
.10.4085/1062-6050-44.4.342
30.
Wu
,
L. C.
,
Laksari
,
K.
,
Kuo
,
C.
,
Luck
,
J. F.
,
Kleiven
,
S.
,
‘Dale’ Bass
,
C. R.
, and
Camarillo
,
D. B.
,
2016
, “
Bandwidth and Sample Rate Requirements for Wearable Head Impact Sensors
,”
J. Biomech.
,
49
(
13
), pp.
2918
2924
.10.1016/j.jbiomech.2016.07.004
You do not currently have access to this content.