Abstract

Although wear is known as the primary cause of long-time failure of total knee arthroplasty (TKA), it can be vital in short- and midterm TKA failure due to laxity. One of the reasons leading to joint laxity and instability is ligamentous insufficiency. This study, therefore, aims to investigate the effects of insufficient ligaments-related knee laxity on both nonlinear dynamics and wear of TKA. The study hypothesizes (a) ligamentous insufficiency can increase TKA damage; (b) stiffness reduction of each of the posterior cruciate ligament (PCL) and medial–lateral collateral ligaments (MCL-LCL) can differently contribute to TKA damage. A forward dynamics methodology is developed and the ligament behavior is simulated employing an asymmetric nonlinear elastic model. External loads and moment, due to the presence of all soft tissues, e.g., muscles and hip joint reaction forces, applied to the femoral bone are determined using a musculoskeletal approach linked to the developed model. A mesh density analysis is performed and comparing outcomes with that available in the literature allows for the assessment of our approach. From the results acquired, reduced PCL stiffness leads to an increase in linear wear rates and results in the maximum damage in TKAs. However, the maximum linear wear rates on both condyles occur once the stiffness of all ligaments is reduced. Moreover, the worn area of the tibia surface increases with the reduction in MCL-LCL stiffness on the medial condyle. The joint with insufficient PCL also shows a considerable increase in ligament forces right after toe-off.

References

1.
Cram
,
P.
,
Lu
,
X.
,
Kates
,
S. L.
,
Singh
,
J. A.
,
Li
,
Y.
, and
Wolf
,
B. R.
,
2012
, “
Total Knee Arthroplasty Volume, Utilization, and Outcomes Among Medicare Beneficiaries 1991-2010
,”
JAMA
,
308
(
12
), pp.
1227
1236
.10.1001/2012.jama.11153
2.
Abdel
,
M. P.
,
Morrey
,
M. E.
,
Jensen
,
M. R.
, and Morrey, B. F.,
2011
, “
Increased Long-Term Survival of Posterior Cruciate-Retaining Versus Posterior Cruciate-Stabilizing Total Knee Replacements
,”
J. Bone Jt. Surg. Am.
,
93
(
22
), pp.
2072
2078
. 10.2106/JBJS.J.01143
3.
Arthritis Research UK
,
2013
, Osteoarthritis in General Practice, Arthritis Research UK, UK.
4.
Ren
,
K.
,
Dusad
,
A.
,
Zhang
,
Y.
, and
Wang
,
D.
,
2013
, “
Therapeutic Intervention for Wear Debris-Induced Aseptic Implant Loosening
,”
Acta Pharm. Sin. B
,
3
(
2
), pp.
76
85
.10.1016/j.apsb.2013.02.005
5.
Massin
,
P.
,
2017
, “
How Does Total Knee Replacement Technique Influence Polyethylene Wear?
,”
Orthop. Traumatol.: Surg. Res.
,
103
(
1
), pp.
S21
S27
.10.1016/j.otsr.2016.06.024
6.
Zhang
,
J.
,
Chen
,
Z.
,
Wang
,
L.
,
Li
,
D.
, and
Jin
,
Z.
,
2017
, “
A Patient-Specific Wear Prediction Framework for an Artificial Knee Joint With Coupled Musculoskeletal Multibody-Dynamics and Finite Element Analysis
,”
Tribol. Int.
,
109
, pp.
382
389
.10.1016/j.triboint.2016.10.050
7.
Sharkey
,
P. F.
,
Lichstein
,
P. M.
,
Shen
,
C.
,
Tokarski
,
A. T.
, and
Parvizi
,
J.
,
2014
, “
Why Are Total Knee Arthroplasties Failing Today-Has Anything Changed After 10 Years?
,”
J. Arthroplasty
,
29
(
9
), pp.
1774
1778
.10.1016/j.arth.2013.07.024
8.
Teeter
,
M. G.
,
Parikh
,
A.
,
Taylor
,
M.
,
Sprague
,
J.
, and
Naudie
,
S. D.
,
2015
, “
Wear and Creep Behavior of Total Knee Implants Undergoing Wear Testing
,”
J. Arthroplasty
,
30
(
1
), pp.
130
134
.10.1016/j.arth.2014.08.001
9.
Feng
,
E. L.
,
Stulberg
,
S. D.
, and
Wixon
,
R. L.
,
1994
, “
Progressive Subluxation and Polyethylene Wear in Total Knee Replacements With Flat Articular Surfaces
,”
Clin. Orthop. Relat. Res.
,
299
, pp.
60
71
. https://pubmed.ncbi.nlm.nih.gov/8119038/
10.
Askari
,
E.
,
Flores
,
P.
,
Dabirrahmani
,
D.
, and
Appleyard
,
R.
,
2015
, “
Dynamic Modeling and Analysis of Wear in Hard Hip Replacements Using Multibody Systems Methodologies
,”
Nonlinear Dyn.
,
82
(
1–2
), pp.
1039
1058
.10.1007/s11071-015-2216-9
11.
Reinders
,
J.
,
Sonntag
,
R.
, and
Kretzer
,
J. P.
,
2014
, “
Wear Behavior of an Unstable Knee: Stabilization Via Implant Design?
,”
BioMed Res. Int.
,
2014
, pp.
1
7
.10.1155/2014/821475
12.
Kretzer
,
J. P.
,
Jakubowitz
,
E.
,
Sonntag
,
R.
,
Hofmann
,
K.
,
Heisel
,
C.
, and
Thomsen
,
M.
,
2010
, “
Effect of Joint Laxity on Polyethylene Wear in Total Knee Replacement
,”
J. Biomech.
,
43
(
6
), pp.
1092
1096
.10.1016/j.jbiomech.2009.12.016
13.
Song
,
S. J.
,
Detch
,
R. C.
,
Maloney
,
W. J.
,
Goodman
,
S. B.
, and
Huddleston
,
J. I.
,
2014
, “
Causes of Instability After Total Knee Arthroplasty
,”
J. Arthroplasty
,
29
(
2
), pp.
360
364
.10.1016/j.arth.2013.06.023
14.
Dean
,
S. W.
,
Haider
,
H.
,
Walker
,
P.
,
DesJardins
,
J.
, and
Blunn
,
G.
,
2006
, “
Effects of Patient and Surgical Alignment Variables on Kinematics in TKA Simulation Under Force-Control
,”
J. ASTM Int.
,
3
(
10
), p.
100248
.10.1520/JAI100248
15.
White
,
B. F.
,
D'Lima
,
D.
,
Drueding
,
A. C.
,
Cox
,
J.
,
Carignan
,
F. J.
, and
Dean
,
S. W.
,
2006
, “
A Simulator Study of TKR Kinematics Using Modeled Soft-Tissue Constraint: Virtual Soft-Tissue Control for Knee Simulation
,”
J. ASTM Int.
,
3
(
8
), p.
100251
.10.1520/JAI100251
16.
Jiang
,
W.
,
2014
, “
Wear Measurement of Polyethylene Components in Total Knee Replacement
,”
Ph.D. dissertation
, University of Leeds, Leeds, UK.http://etheses.whiterose.ac.uk/7910/1/Thesis_WEI%20JIANG_200500900.pdf
17.
Blunn
,
G. W.
,
Joshi
,
A. B.
,
Minns
,
R. J.
,
Lidgren
,
L.
,
Lilley
,
P.
,
Ryd
,
L.
,
Engelbrecht
,
E.
, and
Walker
,
P. S.
,
1997
, “
Wear in Retrieved Condylar Knee Arthroplasties
,”
J. Arthroplasty
,
12
(
3
), pp.
281
290
.10.1016/S0883-5403(97)90024-3
18.
Rohrbach
,
M.
,
Lüem
,
M.
, and
Ochsner
,
P. E.
,
2008
, “
Patient and Surgery Related Factors Associated With Fatigue Type Polyethylene Wear on 49 PCA and DURACON Retrievals at Autopsy and Revision
,”
J. Orthop. Surg. Res.
,
3
(
1
), pp.
1
10
.10.1186/1749-799X-3-8
19.
Reinders
,
J.
,
Sonntag
,
R.
,
Vot
,
L.
,
Gibney
,
C.
,
Nowack
,
M.
, and
Kretzer
,
J. P.
,
2015
, “
Wear Testing of Moderate Activities of Daily Living Using In Vivo Measured Knee Joint Loading
,”
PLoS One
,
10
(
3
), p.
e0123155
.10.1371/journal.pone.0123155
20.
Marra
,
M. A.
,
Vanheule
,
V.
,
Fluit
,
R.
,
Koopman
,
B. H. F. J. M.
,
Rasmussen
,
J.
,
Verdonschot
,
N.
, and
Andersen
,
M. S.
,
2015
, “
A Subject-Specific Musculoskeletal Modeling Framework to Predict In Vivo Mechanics of Total Knee Arthroplasty
,”
ASME J. Biomech. Eng.
,
137
(
2
), p.
020904
.10.1115/1.4029258
21.
Fregly
,
B. J.
,
Sawyer
,
W. G.
,
Harman
,
M. K.
, and
Banks
,
S. A.
,
2005
, “
Computational Wear Prediction of a Total Knee Replacement From In Vivo Kinematics
,”
J. Biomech.
,
38
(
2
), pp.
305
314
.10.1016/j.jbiomech.2004.02.013
22.
Pandy
,
M. G.
,
Sasaki
,
K.
, and
Kim
,
S.
,
1997
, “
A Three-Dimensional Musculoskeletal Model of the Human Knee Joint. Part 1: Theoretical Construction
,”
Comput. Methods Biomech. Biomed. Eng.
,
1
(
2
), pp.
87
108
.10.1080/01495739708936697
23.
Abdel-Rahman
,
E. M.
, and
Hefzy
,
M. S.
,
1998
, “
Three-Dimensional Dynamic Behavior of the Human Knee Joint Under Impact Loading
,”
Med. Eng. Phys.
,
20
(
4
), pp.
276
290
.10.1016/S1350-4533(98)00010-1
24.
Andersen
,
M. S.
,
de Zee
,
M.
,
Damsgaard
,
M.
,
Nolte
,
D.
, and
Rasmussen
,
J.
,
2017
, “
Introduction to Force-Dependent Kinematics: Theory and Application to Mandible Modeling
,”
ASME J. Biomech. Eng.
,
139
(
9
), p.
091001
.10.1115/1.4037100
25.
Barber
,
J. R.
,
1991
, “
Is Modeling in Tribology a Useful Activity?
,”
Tribological Modeling for Mechanical Designers
, K. Ludema and R. Bayer, eds., ASTM International, West Conshohocken, PA, Standard No. STP1105, pp.
165
172
.10.1520/STP17664S
26.
Andersen
,
M. S.
,
2018
, “How Sensitive are Predicted Muscle and Knee Contact Forces to Normalization Factors and Polynomial Order in the Muscle Recruitment Criterion Formulation?,”
Int. Biomech
., 5(1), pp.
88
103
.10.1080/23335432.2018.1514278
27.
Caruntu
,
D. I.
, and
Hefzy
,
M. S.
,
2004
, “
3-D Anatomically Based Dynamic Modeling of the Human Knee to Include Tibio-Femoral and Patello-Femoral Joints
,”
ASME J. Biomech. Eng.
,
126
(
1
), pp.
44
53
.10.1115/1.1644565
28.
Gantoi
,
F. M.
,
Brown
,
M. A.
, and
Shabana
,
A. A.
,
2013
, “
Finite Element Modeling of the Contact Geometry and Deformation in Biomechanics Applications
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
4
), p.
041013
.10.1115/1.4024541
29.
Fregly
,
B. J.
,
Besier
,
T. F.
,
Lloyd
,
D. G.
,
Delp
,
S. L.
,
Banks
,
S. A.
,
Pandy
,
M. G.
, and
D'Lima
,
D. D.
,
2012
, “
Grand Challenge Competition to Predict In Vivo Knee Loads
,”
J. Orthop. Res.
,
30
(
4
), pp.
503
513
.10.1002/jor.22023
30.
Kirking
,
B.
,
Krevolin
,
J.
,
Townsend
,
C.
,
Colwell
,
C. W.
, and
D'Lima
,
D. D.
,
2006
, “
A Multiaxial Force-Sensing Implantable Tibial Prosthesis
,”
J. Biomech.
,
39
(
9
), pp.
1744
1751
.10.1016/j.jbiomech.2005.05.023
31.
D'Lima
,
D. D.
,
Townsend
,
C. P.
,
Arms
,
S. W.
,
Morris
,
B. A.
, and
Colwell
,
C. W.
,
2005
, “
An Implantable Telemetry Device to Measure Intra-Articular Tibial Forces
,”
J. Biomech.
,
38
(
2
), pp.
299
304
.10.1016/j.jbiomech.2004.02.011
32.
Pellikaan
,
P.
,
van der Krogt
,
M. M.
,
Carbone
,
V.
,
Fluit
,
R.
,
Vigneron
,
L. M.
,
Van Deun
,
J.
,
Verdonschot
,
N.
, and
Koopman
,
H. F. J. M.
,
2014
, “
Evaluation of a Morphing Based Method to Estimate Muscle Attachment Sites of the Lower Extremity
,”
J. Biomech.
,
47
(
5
), pp.
1144
1150
.10.1016/j.jbiomech.2013.12.010
33.
Andersen
,
M. S.
,
Damsgaard
,
M.
,
MacWilliams
,
B.
, and
Rasmussen
,
J.
,
2010
, “
A Computationally Efficient Optimisation-Based Method for Parameter Identification of Kinematically Determinate and Over-Determinate Biomechanical Systems
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
2
), pp.
171
183
.10.1080/10255840903067080
34.
Zajac
,
F. E.
,
1989
, “
Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control
,”
Crit. Rev. Biomed. Eng.
,
17
(
4
), pp.
359
411
.https://pubmed.ncbi.nlm.nih.gov/2676342/
35.
Silva
,
M.
,
Shepherd
,
E. F.
,
Jackson
,
W. O.
,
Pratt
,
J. A.
,
McClung
,
C. D.
, and
Schmalzried
,
T. P.
,
2003
, “
Knee Strength After Total Knee Arthroplasty
,”
J. Arthroplasty
,
18
(
5
), pp.
605
611
.10.1016/S0883-5403(03)00191-8
36.
Butler
,
D. L.
,
Kay
,
M. D.
, and
Stouffer
,
D. C.
,
1986
, “
Comparison of Material Properties in Fascicle-Bone Units From Human Patellar Tendon and Knee Ligaments
,”
J. Biomech.
,
19
(
6
), pp.
425
432
.10.1016/0021-9290(86)90019-9
37.
Andersen
,
M. S.
,
Damsgaard
,
M.
, and
Rasmussen
,
J.
,
2009
, “
Kinematic Analysis of Over-Determinate Biomechanical Systems
,”
Comput. Methods Biomech. Biomed. Eng.
,
12
(
4
), pp.
371
384
.10.1080/10255840802459412
38.
Askari
,
E.
, and
Andersen
,
M. S.
,
2019
, “
A Modification on Velocity Terms of Reynolds Equation in a Spherical Coordinate System
,”
Tribol. Int.
,
131
, pp.
15
23
.10.1016/j.triboint.2018.10.019
39.
Dimas
,
E.
, and
Briassoulis
,
D.
,
1999
, “
3D Geometric Modelling Based on NURBS: A Review
,”
Adv. Eng. Software
,
30
(
9–11
), pp.
741
751
.10.1016/S0965-9978(98)00110-0
40.
Landon
,
R. L.
,
Hast
,
M. W.
, and
Piazza
,
S. J.
,
2009
, “
Robust Contact Modeling Using Trimmed NURBS Surfaces for Dynamic Simulations of Articular Contact
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
30–32
), pp.
2339
2346
.10.1016/j.cma.2009.02.022
41.
Bei
,
Y.
, and
Fregly
,
B. J.
,
2004
, “
Multibody Dynamic Simulation of Knee Contact Mechanics
,”
Med. Eng. Phys.
,
26
(
9
), pp.
777
789
.10.1016/j.medengphy.2004.07.004
42.
Piegl
,
L.
, and
Tiller
,
W.
,
1997
,
The NURBS Book
, 2nd ed., Springer-Verlag, Berlin
.
43.
Wriggers
,
O.
,
2006
,
Computational Contact Mechanics
, 2nd ed.,
Springer-Verlag, Berlin
.
44.
Askari
,
E.
, and
Andersen
,
M. S.
,
2018
, “
A Closed-Form Formulation for the Conformal Articulation of Metal-on-Polyethylene Hip Prostheses: Contact Mechanics and Sliding Distance
,”
Proc. Inst. Mech. Eng., Part H
,
232
(
12
), pp.
1196
1113
.10.1177/0954411918810044
45.
Zhao
,
D.
,
Sakoda
,
H.
,
Sawyer
,
W. G.
,
Banks
,
S. A.
, and
Fregly
,
B. J.
,
2008
, “
Predicting Knee Replacement Damage in a Simulator Machine Using a Computational Model With a Consistent Wear Factor
,”
ASME J. Biomech. Eng.
,
130
(
1
), p.
011004
.10.1115/1.2838030
46.
Abdelgaied
,
A.
,
Liu
,
F.
,
Brockett
,
C.
,
Jennings
,
L.
,
Fisher
,
J.
, and
Jin
,
Z.
,
2011
, “
Computational Wear Prediction of Artificial Knee Joints Based on a New Wear Law and Formulation
,”
J. Biomech.
,
44
(
6
), pp.
1108
1116
.10.1016/j.jbiomech.2011.01.027
47.
Blankevoort
,
L.
,
Kuiper
,
J. H.
,
Huiskes
,
R.
, and
Grootenboer
,
H. J.
,
1991
, “
Articular Contact in a Three-Dimensional Model of the Knee
,”
J. Biomech.
,
24
(
11
), pp.
1019
1031
.10.1016/0021-9290(91)90019-J
48.
Bowman
,
K. F.
, and
Sekiya
,
J. K.
,
2010
, “
Anatomy and Biomechanics of the Posterior Cruciate Ligament, Medial and Lateral Sides of the Knee
,”
Sports Med. Arthrosc.
,
18
(
4
), pp.
222
229
.10.1097/JSA.0b013e3181f917e2
49.
Chwaluk
,
A.
, and
Ciszek
,
B.
,
2009
, “
Anatomy of the Posterior Cruciate Ligament
,”
Folia Morphol.
,
68
(
1
), pp.
8
12
.
50.
Bauchau
,
O. A.
,
2011
,
Flexible Multibody Dynamics
,
Springer
, Berlin.
51.
Askari
,
E.
,
Flores
,
P.
,
Dabirrahmani
,
D.
, and
Appleyard
,
R.
,
2014
, “
Nonlinear Vibration and Dynamics of Ceramic on Ceramic Artificial Hip Joints: A Spatial Multibody Modelling
,”
Nonlinear Dyn.
,
76
(
2
), pp.
1365
1377
.10.1007/s11071-013-1215-y
52.
Askari
,
E.
,
Flores
,
P.
,
Dabirrahmani
,
D.
, and
Appleyard
,
R.
,
2015
, “
A Computational Analysis of Squeaking Hip Prostheses
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
2
), p.
024502
.10.1115/1.4028109
53.
Knight
,
L. A.
,
Pal
,
S.
,
Coleman
,
J. C.
,
Bronson
,
F.
,
Haider
,
H.
,
Levine
,
D. L.
,
Taylor
,
M.
, and
Rullkoetter
,
P. J.
,
2007
, “
Comparison of Long-Term Numerical and Experimental Total Knee Replacement Wear During Simulated Gait Loading
,”
J. Biomech.
,
40
(
7
), pp.
1550
1558
.10.1016/j.jbiomech.2006.07.027
54.
Archard
,
J. F.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
.10.1063/1.1721448
55.
Askari
,
E.
,
Flores
,
P.
,
Dabirrahmani
,
D.
, and
Appleyard
,
R.
,
2015
, “
Wear Prediction of Ceramic-on-Ceramic Artificial Hip Joints
,”
New Trends in Mechanism and Machine Science, From Fundamentals to Industrial Applications
,
P.
Flores
and
F.
Viadero
, eds.,
Springer
, Berlin.10.1007/978-3-319-09411-3_49
56.
Kang
,
L.
,
Galvin
,
A. L.
,
Fisher
,
J.
, and
Jin
,
Z.
,
2009
, “
Enhanced Computational Prediction of Polyethylene Wear in Hip Joints by Incorporating Cross-Shear and Contact Pressure in Additional to Load and Sliding Distance: Effect of Head Diameter
,”
J. Biomech.
,
42
(
7
), pp.
912
918
.10.1016/j.jbiomech.2009.01.005
57.
Wang
,
A.
,
Sun
,
D. C.
,
Yau
,
S.-S.
,
Edwards
,
B.
,
Sokol
,
M.
,
Essner
,
A.
,
Polineni
,
V. K.
,
Stark
,
C.
, and
Dumbleton
,
J. H.
,
1997
, “
Orientation Softening in the Deformation and Wear of Ultra-High Molecular Weight Polyethylene
,”
Wear
,
203–204
, pp.
230
241
.10.1016/S0043-1648(96)07362-0
58.
Wang
,
A.
,
2001
, “
A Unified Theory of Wear for Ultra-High Molecular Weight Polyethylene in Multi-Directional Sliding
,”
Wear
,
248
(
1–2
), pp.
38
47
.10.1016/S0043-1648(00)00522-6
59.
Wang
,
A.
,
Essner
,
A.
, and
Klein
,
R.
,
2001
, “
Effect of Contact Stress on Friction and Wear of Ultra-High Molecular Weight Polyethylene in Total Hip Replacement
,”
Proc. Inst. Mech. Eng., Part H
,
215
(
2
), pp.
133
139
.10.1243/0954411011533698
60.
Lee
,
K. Y.
, and
Pienkowski
,
D.
,
1998
, “
Compressive Creep Characteristics of Extruded Ultrahigh-Molecular-Weight Polyethylene
,”
J. Biomed. Mater. Res.
,
39
(
2
), pp.
261
265
.10.1002/(SICI)1097-4636(199802)39:2<261::AID-JBM13>3.0.CO;2-G
61.
Askari
,
E.
, and
Andersen
,
M. S.
,
2019
, “
Dynamic Modelling of Polyethylene Damage in Total Hip Arthroplasties: Wear and Creep
,”
Multibody Syst. Dyn.
,
45
(
4
), pp.
403
429
.10.1007/s11044-018-09652-2
62.
Brockett
,
C. L.
,
Jennings
,
L. M.
,
Hardaker
,
C.
, and
Fisher
,
J.
,
2012
, “
Wear of Moderately Cross-Linked Polyethylene in Fixed-Bearing Total Knee Replacements
,”
Proc. Inst. Mech. Eng., Part H
,
226
(
7
), pp.
529
535
.10.1177/0954411912445265
63.
Galvin
,
A. L.
,
Kang
,
L.
,
Udofia
,
I.
,
Jennings
,
L. M.
,
McEwen
,
H. M. J.
,
Jin
,
Z.
, and
Fisher
,
J.
,
2009
, “
Effect of Conformity and Contact Stress on Wear in Fixed-Bearing Total Knee Prostheses
,”
J. Biomech.
,
42
(
12
), pp.
1898
1902
.10.1016/j.jbiomech.2009.05.010
64.
Harman
,
M. K.
,
Banks
,
S. A.
, and
Hodge
,
W. A.
,
2001
, “
Polyethylene Damage and Knee Kinematics After Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
392
, pp.
383
393
.10.1097/00003086-200111000-00050
65.
Gill
,
H. S.
,
Waite
,
J. C.
,
Short
,
A.
,
Kellett
,
C. F.
,
Price
,
A. J.
, and
Murray
,
D. W.
,
2006
, “
In Vivo Measurement of Volumetric Wear of a Total Knee Replacement
,”
Knee
,
13
(
4
), pp.
312
317
.10.1016/j.knee.2006.04.001
66.
Lavernia
,
C. J.
,
Sierra
,
R. J.
,
Hungerford
,
D. S.
, and
Krackow
,
K.
,
2001
, “
Activity Level and Wear in Total Knee Arthroplasty. A Study of Autopsy Retrieval Specimens
,”
J. Arthroplasty
,
16
(
4
), pp.
446
453
.10.1054/arth.2001.23509
67.
Harman
,
M. K.
,
DesJardins
,
J.
,
Benson
,
L.
,
Banks
,
S. A.
,
LaBerge
,
M.
, and
Hodge
,
W. A.
,
2009
, “
Comparison of Polyethylene Tibial Insert Damage From In Vivo Function and In Vitro Wear Simulation
,”
J. Orthop. Res.
,
27
(
4
), pp.
540
548
.10.1002/jor.20743
68.
Marra
,
M. A.
,
Andersen
,
M. S.
,
Damsgaard
,
M.
,
Koopman
,
B. F. J. M.
,
Janssen
,
D.
, and
Verdonschot
,
N.
,
2017
, “
Evaluation of a Surrogate Contact Model in Force-Dependent Kinematic Simulations of Total Knee Replacement
,”
ASME J. Biomech. Eng.
,
139
(
8
), p.
081001
.10.1115/1.4036605
69.
Walker
,
P. S.
, and
Haider
,
H.
,
2003
, “
Characterizing the Motion of Total Knee Replacements in Laboratory Tests
,”
Clin. Orthop. Relat. Res.
,
410
, pp.
54
68
.10.1097/01.blo.0000063599.67412.44
70.
Johnston
,
H.
,
Abdelgaied
,
A.
,
Pandit
,
H.
,
Fisher
,
J.
, and
Jennings
,
L. M.
,
2019
, “
The Effect of Surgical Alignment and Soft Tissue Conditions on the Kinematics and Wear of a Fixed Bearing Total Knee Replacement
,”
J. Mech. Behav. Biomed. Mater.
,
100
, p.
103386
.10.1016/j.jmbbm.2019.103386
71.
Askari
,
E.
, and
Flores
,
P.
,
2020
, “
Coupling Multi-Body Dynamics and Fluid Dynamics to Model Lubricated Spherical Joints
,”
Arch. Appl. Mech.
,
90
(
9
), pp.
2091
2111
.10.1007/s00419-020-01711-5
72.
Askari
,
E.
, and
Daneshmand
,
F.
,
2010
, “
Coupled Vibration of Cantilever Cylindrical Shells Partially Submerged in Fluids With Continuous, Simply Connected and Non-Convex Domain
,”
J. Sound Vib.
,
329
(
17
), pp.
3520
3536
.10.1016/j.jsv.2010.02.027
73.
Zhang
,
Q.
,
Chen
,
Z.
,
Zhang
,
J.
,
Hu
,
J.
,
Peng
,
Y.
,
Fan
,
X.
, and
Jin
,
Z.
,
2019
, “
Insert Conformity Variation Affects Kinematics and Wear Performance of Total Knee Replacements
,”
Clin. Biomech.
,
65
, pp.
19
25
.10.1016/j.clinbiomech.2019.03.016
74.
Sampaio
,
M.
,
Buciumeanu
,
M.
,
Askari
,
E.
,
Flores
,
P.
,
Souza
,
J. C. M.
,
Gomes
,
J. R.
,
Silva
,
F. S.
, and
Henriques
,
B.
,
2016
, “
Effects of Poly-Ether-Ether Ketone (PEEK) Veneer Thickness on the Reciprocating Friction and Wear Behavior of PEEK/Ti6Al4V Structures in Artificial Saliva
,”
Wear
,
368–369
, pp.
84
91
.10.1016/j.wear.2016.09.009
75.
Askari
,
E.
,
Flores
,
P.
, and
Silva
,
F.
,
2018
, “
A Particle Swarm-Based Algorithm for Optimization of Multi-Layered and Graded Dental Ceramics
,”
J. Mech. Behav. Biomed. Mater.
,
77
, pp.
461
469
.10.1016/j.jmbbm.2017.10.005
You do not currently have access to this content.