Abstract

Subsidence of implants into bone is a major source of morbidity. The underlying mechanics of the phenomenon are not clear, but are likely related to interactions between contact stresses and the underlying porous trabecular bone structure. To gain insight into these interactions, we studied the penetration of three-dimensional (3D)-printed indenters with systematically varying geometries into Sawbones® foam substrates and isolated the effects of contact geometry from those of overall contact size and area. When size, contact area, and indented material stiffness and strength are controlled for, we show that resistance to penetration is in fact a function of topology only. Indenters with greater line contact lengths support higher subsidence loads in compression. These results have direct implications for the design of implants to resist subsidence into bone.

References

1.
Bashkuev
,
M.
,
Checa
,
S.
,
Postigo
,
S.
,
Duda
,
G.
, and
Schmidt
,
H.
,
2015
, “
Computational Analyses of Different Intervertebral Cages for Lumbar Spinal Fusion
,”
J. Biomech.
,
48
(
12
), pp.
3274
3282
.10.1016/j.jbiomech.2015.06.024
2.
Lin
,
C.-Y.
,
Wirtz
,
T.
,
LaMarca
,
F.
, and
Hollister
,
S. J.
,
2007
, “
Structural and Mechanical Evaluations of a Topology Optimized Titanium Interbody Fusion Cage Fabricated by Selective Laser Melting Process
,”
J. Biomed. Mater. Res. Part A
,
83A
(
2
), pp.
272
279
.10.1002/jbm.a.31231
3.
Dattani
,
R.
,
2007
, “
Femoral Osteolysis Following Total Hip Replacement
,”
Postgrad. Med. J.
,
83
(
979
), pp.
312
316
.10.1136/pgmj.2006.053215
4.
Mirza
,
S. B.
,
Dunlop
,
D. G.
,
Panesar
,
S. S.
,
Naqvi
,
S. G.
,
Gangoo
,
S.
, and
Salih
,
S.
,
2010
, “
Basic Science Considerations in Primary Total Hip Replacement Arthroplasty
,”
Open Orthop. J.
,
4
(
1
), pp.
169
180
.10.2174/1874325001004010169
5.
Cinotti
,
G.
,
Rocca
,
A. D.
,
Sessa
,
P.
,
Ripani
,
F.
, and
Giannicola
,
G.
,
2013
, “
Thigh Pain, Subsidence and Survival Using a Short Cementless Femoral Stem With Pure Metaphyseal Fixation at Minimum 9-Year Follow-Up
,”
Orthop. Traumatol.: Surg. Res.
,
99
(
1
), pp.
30
36
.10.1016/j.otsr.2012.09.016
6.
Rao
,
P. J.
,
Phan
,
K.
,
Giang
,
G.
,
Maharaj
,
M. M.
,
Phan
,
S.
, and
Mobbs
,
R. J.
,
2017
, “
Subsidence Following Anterior Lumbar Interbody Fusion (Alif): A Prospective Study
,”
J. Spine Surg.
,
3
(
2
), pp.
168
175
.10.21037/jss.2017.05.03
7.
Jost
,
B.
,
Cripton
,
P. A.
,
Lund
,
T.
,
Oxland
,
T. R.
,
Lippuner
,
K.
,
Jaeger
,
P.
, and
Nolte
,
L.-P.
,
1998
, “
Compressive Strength of Interbody Cages in the Lumbar Spine: The Effect of Cage Shape, Posterior Instrumentation and Bone Density
,”
Eur. Spine J.
,
7
(
2
), pp.
132
141
.10.1007/s005860050043
8.
Tan
,
J.-S.
,
Bailey
,
C. S.
,
Dvorak
,
M. F.
,
Fisher
,
C. G.
, and
Oxland
,
T. R.
,
2005
, “
Interbody Device Shape and Size Are Important to Strengthen the Vertebra–Implant Interface
,”
Spine
,
30
(
6
), pp.
638
644
.10.1097/01.brs.0000155419.24198.35
9.
Au
,
A. G.
,
Aiyangar
,
A. K.
,
Anderson
,
P. A.
, and
Ploeg
,
H.-L.
,
2011
, “
A New Bone Surrogate Model for Testing Interbody Device Subsidence
,”
Spine
,
36
(
16
), pp.
1289
1296
.10.1097/BRS.0b013e31820bffe9
10.
Hsu
,
C.-C.
,
2013
, “
Shape Optimization for the Subsidence Resistance of an Interbody Device Using Simulation-Based Genetic Algorithms and Experimental Validation
,”
J. Orthop. Res.
,
31
(
7
), pp.
1158
1163
.10.1002/jor.22317
11.
Murr
,
L. E.
,
Gaytan
,
S. M.
,
Medina
,
F.
,
Lopez
,
H.
,
Martinez
,
E.
,
Machado
,
B. I.
,
Hernandez
,
D. H.
,
Martinez
,
L.
,
Lopez
,
M. I.
,
Wicker
,
R. B.
, and
Bracke
,
J.
,
2010
, “
Next-Generation Biomedical Implants Using Additive Manufacturing of Complex, Cellular and Functional Mesh Arrays
,”
Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci.
,
368
(
1917
), pp.
1999
2032
.10.1098/rsta.2010.0010
12.
Choy
,
W. J.
,
Parr
,
W. C. H.
,
Phan
,
K.
,
Walsh
,
W. R.
, and
Mobbs
,
R. J.
,
2018
, “
3-Dimensional Printing for Anterior Cervical Surgery: A Review
,”
J. Spine Surg.
,
4
(
4
), pp.
757
769
.10.21037/jss.2018.12.01
13.
Osanov
,
M.
, and
Guest
,
J. K.
,
2016
, “
Topology Optimization for Architected Materials Design
,”
Annu. Rev. Mater. Res.
,
46
(
1
), pp.
211
233
.10.1146/annurev-matsci-070115-031826
14.
Tsai
,
P.-I.
,
Hsu
,
C.-C.
,
Chen
,
S.-Y.
,
Wu
,
T.-H.
, and
Huang
,
C.-C.
,
2016
, “
Biomechanical Investigation Into the Structural Design of Porous Additive Manufactured Cages Using Numerical and Experimental Approaches
,”
Comput. Biol. Med.
,
76
, pp.
14
23
.10.1016/j.compbiomed.2016.06.016
15.
Plotnick
,
R. E.
,
Dattilo
,
B. F.
,
Piquard
,
D.
,
Bauer
,
J.
, and
Corrie
,
J.
,
2013
, “
The Orientation of Strophomenid Brachiopods on Soft Substrates
,”
J. Paleontol.
,
87
(
5
), pp.
818
825
.10.1666/12-152
16.
Noailles
,
F.
,
2016
, “
Life on the Seafloor: Adaptations and Strategies in Stylophora (Echinodermata)
,”
Lethaia
,
49
(
3
), pp.
365
378
.10.1111/let.12152
17.
Rennie
,
J.
,
1831
,
The Menageries: Quadrupeds, Described and Drawn From Living Subjects
,
M.A. Nattali
,
London
.
18.
Dagg
,
A. I.
,
2009
, “
The Locomotion of the Camel (Camelus Dromedarius)
,”
J. Zool.
,
174
(
1
), pp.
67
78
.10.1111/j.1469-7998.1974.tb03144.x
19.
Thayer
,
C.
,
1975
, “
Morphologic Adaptations of Benthic Invertebrates to Soft Substrata
,”
J. Mar. Res.
,
33
(
2
), pp.
177
189
.https://images.peabody.yale.edu/publications/jmr/jmr33-02-02.pdf
20.
Flores-Johnson
,
E.
, and
Li
,
Q.
,
2010
, “
Indentation Into Polymeric Foams
,”
Int. J. Solids Struct.
,
47
(
16
), pp.
1987
1995
.10.1016/j.ijsolstr.2010.03.025
21.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
22.
Barber
,
J.
, and
Ciavarella
,
M.
,
2000
, “
Contact Mechanics
,”
Int. J. Solids Struct.
,
37
(
1–2
), pp.
29
43
.10.1016/S0020-7683(99)00075-X
23.
Sawbones
,
2017
, “
Pacific Research Laboratories, Sawbones Biomechanical Test Materials Catalog
,” Sawbones, Vashon, WA.
24.
ASTM
,
2016
,
Standard Specification for Rigid Polyurethane Foam for Use as a Standard Material for Testing Orthopaedic Devices and Instruments
,
ASTM International
,
West Conshohocken
, PA, Standard No. F1839-08.
25.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1997
,
Cellular Solids: Structure and Properties
(Solid State Science Series), 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
26.
Miltz
,
J.
, and
Ramon
,
O.
,
1990
, “
Energy Absorption Characteristics of Polymeric Foams Used as Cushioning Materials
,”
Polym. Eng. Sci.
,
30
(
2
), pp.
129
133
.10.1002/pen.760300210
27.
Shaw
,
M.
, and
Sata
,
T.
,
1966
, “
The Plastic Behavior of Cellular Materials
,”
Int. J. Mech. Sci.
,
8
(
7
), pp.
469
478
.10.1016/0020-7403(66)90019-1
28.
Wilsea
,
M.
,
Johnson
,
K.
, and
Ashby
,
M.
,
1975
, “
Indentation of Foamed Plastics
,”
Int. J. Mech. Sci.
,
17
(
7
), pp.
457
460
.10.1016/0020-7403(75)90044-2
29.
Onck
,
P.
,
2003
, “
Scale Effects in Cellular Metals
,”
MRS Bull.
,
28
(
4
), pp.
279
283
.10.1557/mrs2003.81
30.
Olurin
,
O. B.
,
Fleck
,
N. A.
, and
Ashby
,
M. F.
,
2000
, “
Indentation Resistance of an Aluminium Foam
,”
Scr. Mater.
,
43
(
11
), pp.
983
989
.10.1016/S1359-6462(00)00519-4
31.
Szivek
,
J. A.
,
Thomas
,
M.
, and
Benjamin
,
J. B.
,
1993
, “
Technical Note. characterization of a Synthetic Foam as a Model for Human Cancellous Bone
,”
J. Appl. Biomater.
,
4
(
3
), pp.
269
272
.10.1002/jab.770040309
32.
Szivek
,
J. A.
,
Thompson
,
J. D.
, and
Benjamin
,
J. B.
,
1995
, “
Characterization of Three Formulations of a Synthetic Foam as Models for a Range of Human Cancellous Bone Types
,”
J. Appl. Biomater.
,
6
(
2
), pp.
125
128
.10.1002/jab.770060207
33.
Calvert
,
K. L.
,
Trumble
,
K. P.
,
Webster
,
T. J.
, and
Kirkpatrick
,
L. A.
,
2010
, “
Characterization of Commercial Rigid Polyurethane Foams Used as Bone Analogs for Implant Testing
,”
J. Mater. Sci.: Mater. Med.
,
21
(
5
), pp.
1453
1461
.10.1007/s10856-010-4024-6
34.
Thompson
,
M. S.
,
McCarthy
,
I. D.
,
Lidgren
,
L.
, and
Ryd
,
L.
,
2003
, “
Compressive and Shear Properties of Commercially Available Polyurethane Foams
,”
ASME J. Biomech. Eng.
,
125
(
5
), pp.
732
734
.10.1115/1.1614820
35.
Patel
,
P. S. D.
,
Shepherd
,
D. E. T.
, and
Hukins
,
D. W. L.
,
2008
, “
Compressive Properties of Commercially Available Polyurethane Foams as Mechanical Models for Osteoporotic Human Cancellous Bone
,”
BMC Musculoskelet. Disord.
,
9
(
1
), pp.
1
7
.10.1186/1471-2474-9-137
36.
Li
,
B.
, and
Aspden
,
R. M.
,
1997
, “
Composition and Mechanical Properties of Cancellous Bone From the Femoral Head of Patients With Osteoporosis or Osteoarthritis
,”
J. Bone Miner. Res.
,
12
(
4
), pp.
641
651
.10.1359/jbmr.1997.12.4.641
37.
Suh
,
P. B.
,
Puttlitz
,
C.
,
Lewis
,
C.
,
Bal
,
B. S.
, and
McGilvray
,
K.
,
2017
, “
The Effect of Cervical Interbody Cage Morphology, Material Composition, and Substrate Density on Cage Subsidence
,”
JAAOS—J. Am. Acad. Orthop. Surg.
,
25
(
2
), pp.
160
168
.10.5435/JAAOS-D-16-00390
38.
Shea
,
M.
,
Edwards
,
W. T.
,
White
,
A. A.
, and
Hayes
,
W. C.
,
1991
, “
Variations of Stiffness and Strength Along the Human Cervical Spine
,”
J. Biomech.
,
24
(
2
), pp.
95
107
.10.1016/0021-9290(91)90354-P
39.
Polikeit
,
A.
,
Ferguson
,
S. J.
,
Nolte
,
L. P.
, and
Orr
,
T. E.
,
2003
, “
Factors Influencing Stresses in the Lumbar Spine After the Insertion of Intervertebral Cages: Finite Element Analysis
,”
Eur. Spine J.
,
12
(
4
), pp.
413
420
.10.1007/s00586-002-0505-8
40.
Hulme
,
P. A.
,
Ferguson
,
S. J.
, and
Boyd
,
S. K.
,
2008
, “
Determination of Vertebral Endplate Deformation Under Load Using Micro-Computed Tomography
,”
J. Biomech.
,
41
(
1
), pp.
78
85
.10.1016/j.jbiomech.2007.07.018
41.
Truumees
,
E.
,
Demetropoulos
,
C. K.
,
Yang
,
K. H.
, and
Herkowitz
,
H. N.
,
2003
, “
Failure of Human Cervical Endplates: A Cadaveric Experimental Model
,”
Spine
,
28
(
19
), pp.
2204
2208
.10.1097/01.BRS.0000084881.11695.50
42.
Shirazi-Adl
,
A.
,
Patenaude
,
O.
,
Dammak
,
M.
, and
Zukor
,
D.
,
2001
, “
Experimental and Finite Element Comparison of Various Fixation Designs in Combined Loads
,”
ASME J. Biomech. Eng.
,
123
(
5
), pp.
391
395
.10.1115/1.1395572
43.
Palissery
,
V.
,
Taylor
,
M.
, and
Browne
,
M.
,
2004
, “
Fatigue Characterization of a Polymer Foam to Use as a Cancellous Bone Analog Material in the Assessment of Orthopaedic Devices
,”
J. Mater. Sci.: Mater. Med.
,
15
(
1
), pp.
61
67
.10.1023/B:JMSM.0000010098.65572.3b
44.
He
,
S.
,
Zhou
,
P.
,
Wang
,
L.
,
Xiong
,
X.
,
Zhang
,
Y.
,
Deng
,
Y.
, and
Wei
,
S.
,
2014
, “
Antibiotic-Decorated Titanium With Enhanced Antibacterial Activity Through Adhesive Polydopamine for Dental/Bone Implant
,”
J. R. Soc. Interface
,
11
(
95
), p.
20140169
.10.1098/rsif.2014.0169
45.
Lavecchia
,
C. E.
,
Espino
,
D. M.
,
Moerman
,
K. M.
,
Tse
,
K. M.
,
Robinson
,
D.
,
Lee
,
P. V. S.
, and
Shepherd
,
D. E. T.
,
2018
, “
Lumbar Model Generator: A Tool for the Automated Generation of a Parametric Scalable Model of the Lumbar Spine
,”
J. R. Soc. Interface
,
15
(
138
), p.
20170829
.10.1098/rsif.2017.0829
46.
Kumar
,
N.
,
Judith
,
M.
,
Kumar
,
A.
,
Mishra
,
V.
, and
Robert
,
M.
,
2005
, “
Analysis of Stress Distribution in Lumbar Interbody Fusion
,”
Spine
,
30
(
15
), pp.
1731
1735
.10.1097/01.brs.0000172160.78207.49
You do not currently have access to this content.