Abstract

Central venous catheter (CVC) related thrombosis is a major cause of CVC dysfunction in patients under hemodialysis. The aim of our study was to investigate the impact of CVC insertion on hemodynamics in the central veins and to examine the changes in hemodynamic environments that may be related to thrombus formation due to the implantation of CVC. Patient-specific models of the central veins with and without CVC were reconstructed based on computed tomography images. Flow patterns in the veins were numerically simulated to obtain hemodynamic parameters such as time-averaged wall shear stress (TAWSS), oscillating shear index (OSI), relative residence time (RRT), and normalized transverse wall shear stress (transWSS) under pulsatile flow. The non-Newtonian effects of blood flow were also analyzed using the Casson model. The insertion of CVC caused significant changes in the hemodynamic environment in the central veins. A greater disturbance and increase of velocity were observed in the central veins after the insertion of CVC. As a result, TAWSS and transWSS were markedly increased, but most parts of OSI and RRT decreased. Newtonian assumption of blood flow would overestimate the increase in TAWSS after CVC insertion. High wall shear stress (WSS) and flow disturbance, especially the multidirectionality of the flow, induced by the CVC may be a key factor in initiating thrombosis after CVC insertion. Accordingly, approaches to decrease the flow disturbance during CVC insertion may help restrain the occurrence of thrombosis. More case studies with pre-operative and postoperative modeling and clinical follow-up need to be performed to verify these findings. Non-Newtonian blood flow assumption is recommended in computational fluid dynamics (CFD) simulations of veins with CVCs.

References

1.
Gunawansa
,
N.
,
Sudusinghe
,
D. H.
, and
Wijayaratne
,
D. R.
,
2018
, “
Hemodialysis Catheter-Related Central Venous Thrombosis: Clinical Approach to Evaluation and Management
,”
Ann. Vasc. Surg.
,
51
, pp.
298
305
.10.1016/j.avsg.2018.02.033
2.
Schwanke
,
A. A.
,
Danski
,
M. T. R.
,
Pontes
,
L.
,
Kusma
,
S. Z.
, and
Lind
,
J.
,
2018
, “
Central Venous Catheter for Hemodialysis: Incidence of Infection and Risk Factors
,”
Rev. Bras. Enfermagem
,
71
(
3
), pp.
1115
1121
.10.1590/0034-7167-2017-0047
3.
Fraser
,
K. H.
,
Zhang
,
T.
,
Taskin
,
M. E.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2010
, “
Computational Fluid Dynamics Analysis of Thrombosis Potential in Left Ventricular Assist Device Drainage Cannulae
,”
ASAIO J.
,
56
(
3
), pp.
157
163
.10.1097/MAT.0b013e3181d861f1
4.
Peng
,
L.
,
Qiu
,
Y.
,
Huang
,
Z.
,
Xia
,
C.
,
Dai
,
C.
,
Zheng
,
T.
, and
Li
,
Z.
,
2017
, “
Numerical Simulation of Hemodynamic Changes in Central Veins After Tunneled Cuffed Central Venous Catheter Placement in Patients Under Hemodialysis
,”
Sci. Rep.
,
7
(
1
), pp.
1
8
.10.1038/s41598-017-12456-7
5.
Maria
,
Z.
,
Yin
,
W.
, and
Rubenstein
,
D. A.
,
2014
, “
Combined Effects of Physiologically Relevant Disturbed Wall Shear Stress and Glycated Albumin on Endothelial Cell Functions Associated With Inflammation, Thrombosis and Cytoskeletal Dynamics
,”
J. Diabetes Invest.
,
5
(
4
), pp.
372
381
.10.1111/jdi.12162
6.
Helmlinger
,
G.
,
Berk
,
B. C.
, and
Nerem
,
R. M.
,
1995
, “
Calcium Responses of Endothelial Cell Monolayers Subjected to Pulsatile and Steady Laminar Flow Differ
,”
Am. J. Physiol. Cell Physiol.
,
269
(
2
), pp.
C367
C375
.10.1152/ajpcell.1995.269.2.C367
7.
Qiu
,
Y.
,
Yuan
,
D.
,
Wang
,
Y.
,
Wen
,
J.
, and
Zheng
,
T.
,
2018
, “
Hemodynamic Investigation of a Patient-Specific Abdominal Aortic Aneurysm With Iliac Artery Tortuosity
,”
Comput. Methods Biomech. Biomed. Eng.
,
21
(
16
), pp.
824
833
.10.1080/10255842.2018.1522531
8.
Ho
,
H.
,
Mithraratne
,
K.
, and
Hunter
,
P.
,
2013
, “
Numerical Simulation of Blood Flow in an Anatomically-Accurate Cerebral Venous Tree
,”
IEEE Trans. Med. Imaging
,
32
(
1
), pp.
85
91
.10.1109/TMI.2012.2215963
9.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
,
1985
, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation Between Plaque Location and Low Oscillating Shear Stress
,”
Aeteriosclerosis
,
5
(
3
), pp.
293
302
.10.1161/01.ATV.5.3.293
10.
Himburg
,
H. A.
,
Grzybowski
,
D. M.
,
Hazel
,
A. L.
,
LaMack
,
J. A.
,
Li
,
X.-M.
, and
Friedman
,
M. H.
,
2004
, “
Spatial Comparison Between Wall Shear Stress Measures and Porcine Arterial Endothelial Permeability
,”
Am. J. Physiol.-Heart Circ. Physiol.
,
286
(
5
), pp.
H1916
H1922
.10.1152/ajpheart.00897.2003
11.
Peiffer
,
V.
,
Sherwin
,
S. J.
, and
Weinberg
,
P. D.
,
2013
, “
Computation in the Rabbit Aorta of a New Metric–The Transverse Wall Shear Stress–To Quantify the Multidirectional Character of Disturbed Blood Flow
,”
J. Biomech.
,
46
(
15
), pp.
2651
2658
.10.1016/j.jbiomech.2013.08.003
12.
Hyun
,
S.
,
Kleinstreuer
,
C.
, and
Archie
,
J. P.
, Jr.
,
2000
, “
Hemodynamics Analyses of Arterial Expansions With Implications to Thrombosis and Restenosis
,”
Med. Eng. Phys.
,
22
(
1
), pp.
13
27
.10.1016/S1350-4533(00)00006-0
13.
Ascuitto
,
R.
,
Ross-Ascuitto
,
N.
,
Guillot
,
M.
, and
Celestin
,
C.
,
2017
, “
Computational Fluid Dynamics Characterization of Pulsatile Flow in Central and Sano Shunts Connected to the Pulmonary Arteries: Importance of Graft Angulation on Shear Stress-Induced, Platelet-Mediated Thrombosis
,”
Interact. Cardiovasc. Thorac. Surg.
,
25
(
3
), pp.
414
421
.10.1093/icvts/ivx036
14.
Celestin
,
C.
,
Guillot
,
M.
,
Ross-Ascuitto
,
N.
, and
Ascuitto
,
R.
,
2015
, “
Computational Fluid Dynamics Characterization of Blood Flow in Central Aorta to Pulmonary Artery Connections: Importance of Shunt Angulation as a Determinant of Shear Stress-Induced Thrombosis
,”
Pediatr. Cardiol.
,
36
(
3
), pp.
600
615
.10.1007/s00246-014-1055-7
15.
Chen
,
C.-Y.
,
Antón
,
R.
,
Hung
,
M.-Y.
,
Menon
,
P.
,
Finol
,
E. A.
, and
Pekkan
,
K.
,
2014
, “
Effects of Intraluminal Thrombus on Patient-Specific Abdominal Aortic Aneurysm Hemodynamics Via Stereoscopic Particle Image Velocity and Computational Fluid Dynamics Modeling
,”
ASME J. Biomech. Eng.
,
136
(
3
), p.
031001
.10.1115/1.4026160
16.
Xue
,
Y.
,
Liu
,
X.
,
Sun
,
A.
,
Zhang
,
P.
,
Fan
,
Y.
, and
Deng
,
X.
,
2016
, “
Hemodynamic Performance of a New Punched Stent Strut: A Numerical Study
,”
Artif. Organs
,
40
(
7
), pp.
669
677
.10.1111/aor.12638
17.
Chen
,
Z.
,
Yu
,
H.
,
Shi
,
Y.
,
Zhu
,
M.
,
Wang
,
Y.
,
Hu
,
X.
,
Zhang
,
Y.
,
Chang
,
Y.
,
Xu
,
M.
, and
Gao
,
W.
,
2017
, “
Vascular Remodelling Relates to an Elevated Oscillatory Shear Index and Relative Residence Time in Spontaneously Hypertensive Rats
,”
Sci. Rep.
,
7
(
1
), pp.
1
10
.10.1038/s41598-017-01906-x
18.
Niestrawska
,
J. A.
,
Viertler
,
C.
,
Regitnig
,
P.
,
Cohnert
,
T. U.
,
Sommer
,
G.
, and
Holzapfel
,
G. A.
,
2016
, “
Microstructure and Mechanics of Healthy and Aneurysmatic Abdominal Aortas: Experimental Analysis and Modelling
,”
J. R. Soc. Interface
,
13
(
124
), p.
20160620
.10.1098/rsif.2016.0620
19.
Lim
,
C. S.
,
Kiriakidis
,
S.
,
Paleolog
,
E. M.
, and
Davies
,
A. H.
,
2012
, “
The Effects of Doxycycline and Micronized Purified Flavonoid Fraction on Human Vein Wall Remodeling Are Not Hypoxia-Inducible Factor Pathway-Dependent
,”
J. Vasc. Surg.
,
56
(
4
), pp.
1069
1077
.10.1016/j.jvs.2012.02.067
20.
Burkart
,
D. J.
,
Johnson
,
C. D.
,
Reading
,
C. C.
, and
Ehman
,
R. L.
,
1995
, “
MR Measurements of Mesenteric Venous Flow: Prospective Evaluation in Healthy Volunteers and Patients With Suspected Chronic Mesenteric Ischemia
,”
Radiology
,
194
(
3
), pp.
801
806
.10.1148/radiology.194.3.7862982
21.
Thomas
,
D. P.
,
Merton
,
R. E.
,
Wood
,
R. D.
, and
Hockley
,
D. J.
,
1985
, “
The Relationship Between Vessel Wall Injury and Venous Thrombosis: An Experimental Study
,”
Br. J. Haematol.
,
59
(
3
), pp.
449
457
.10.1111/j.1365-2141.1985.tb07332.x
22.
Kiyomura
,
M.
,
Katayama
,
T.
,
Kusanagi
,
Y.
, and
Ito
,
M.
,
2006
, “
Ranking the Contributing Risk Factors in Venous Thrombosis in Terms of Therapeutic Potential: Virchow's Triad Revisited
,”
J. Obstet. Gynaecol. Res.
,
32
(
2
), pp.
216
223
.10.1111/j.1447-0756.2006.00374.x
23.
Wolberg
,
A. S.
,
Aleman
,
M. M.
,
Leiderman
,
K.
, and
Machlus
,
K. R.
,
2012
, “
Procoagulant Activity in Hemostasis and Thrombosis: Virchow's Triad Revisited
,”
Anesth. Analg.
,
114
(
2
), pp.
275
285
.10.1213/ANE.0b013e31823a088c
24.
Fulker
,
D.
,
Simmons
,
A.
,
Kabir
,
K.
,
Kark
,
L.
, and
Barber
,
T.
,
2016
, “
The Hemodynamic Effects of Hemodialysis Needle Rotation and Orientation in an Idealized Computational Model
,”
Artif. Organs
,
40
(
2
), pp.
185
189
.10.1111/aor.12521
25.
Mohamied
,
Y.
,
Sherwin
,
S. J.
, and
Weinberg
,
P. D.
,
2017
, “
Understanding the Fluid Mechanics Behind Transverse Wall Shear Stress
,”
J. Biomech.
,
50
, pp.
102
109
.10.1016/j.jbiomech.2016.11.035
26.
Premuzic
,
V.
,
Perkov
,
D.
,
Smiljanic
,
R.
,
Brunetta Gavranic
,
B.
, and
Jelakovic
,
B.
,
2017
, “
The Different Impacts on the Long-Term Survival of Tunneled Internal Jugular Hemodialysis Catheters Based on Tip Position and Laterality
,”
Blood Purif.
,
43
(
4
), pp.
315
320
.10.1159/000454670
27.
Premuzic
,
V.
,
Perkov
,
D.
, and
Smiljanic
,
R.
,
2018
, “
The Development of Central Venous Thrombosis in Hemodialyzed Patients is Associated With Catheter Tip Depth and Localization
,”
Hemodialysis Int.
,
22
(
4
), pp.
454
462
.10.1111/hdi.12662
28.
Engstrom
,
B. I.
,
Horvath
,
J. J.
,
Stewart
,
J. K.
,
Sydnor
,
R. H.
,
Miller
,
M. J.
,
Smith
,
T. P.
, and
Kim
,
C. Y.
,
2013
, “
Tunneled Internal Jugular Hemodialysis Catheters: Impact of Laterality and Tip Position on Catheter Dysfunction and Infection Rates
,”
J. Vasc. Interventional Radiol.
,
24
(
9
), pp.
1295
1302
.10.1016/j.jvir.2013.05.035
You do not currently have access to this content.