Abstract

Subjects suffering from spinal cord injury with lower extremity impairment generally use a wheelchair to move. However, some of them are capable of walking with the help of orthoses and crutches. Standing up and walking regularly have huge benefits for the general health state of these subjects, since it reduces the negative consequences of sedentarism. Therefore, achieving adherence to assisted gait is important, but there is a risk of abandoning due to several issues such as pain, fatigue, or very low speed, which can make the subject return to solely use the wheelchair. Musculoskeletal models can provide estimations of muscular forces and activations, which in turn enable to calculate magnitudes such as joint reactions, energetic cost, and bone stress and strain. These magnitudes can serve to evaluate the impact of assisted gait in the subject's health and to assess the likelihood of adherence. Moreover, they can be used as indicators to compare different assistive devices for a particular subject. As every spinal cord-injured (SCI) subject represents a different case, a procedure to define customized musculoskeletal models for the crutch-orthosis-assisted gait of SCI subjects is proposed in this paper. Issues such as selection of muscles and integration of models of trunk, upper and lower extremities, and assistive devices (crutches and orthoses) are addressed. An inverse-dynamics-based physiological static optimization method that takes into account muscle dynamics at low computational cost is applied to obtain estimates of muscle forces and joint reactions. The method is experimentally validated by electromyography in a case study.

References

1.
Whiteneck
,
G. G.
,
Charlifue
,
S. W.
,
Frankel
,
H. L.
,
Fraser
,
M. H.
,
Gardner
,
B. P.
,
Gerhart
,
K. A.
,
Krishnan
,
K. R.
,
Menter
,
R. R.
,
Nuseibeh
,
I.
,
Short
,
D. J.
, and
Silver
,
J. R.
,
1992
, “
Mortality, Morbidity and Psychosocial Outcomes of Persons Spinal Cord Injured More Than 20 Years Ago
,”
Spinal Cord
,
30
(
9
), pp.
617
630
.10.1038/sc.1992.124
2.
Saunders
,
L. L.
,
Krause
,
J. S.
,
DiPiro
,
N. D.
,
Kraft
,
S.
, and
Brotherton
,
S.
,
2013
, “
Ambulation and Complications Related to Assistive Devices After Spinal Cord Injury
,”
J. Spinal Cord Med.
,
36
(
6
), pp.
652
659
.10.1179/2045772312Y.0000000082
3.
Kozlowski
,
A.
,
Bryce
,
T.
, and
Dijkers
,
M.
,
2015
, “
Time and Effort Required by Persons With Spinal Cord Injury to Learn to Use a Powered Exoskeleton for Assisted Walking
,”
Top. Spinal Cord Inj. Rehabil.
,
21
(
2
), pp.
110
121
.10.1310/sci2102-110
4.
White
,
H. S. F.
,
Hayes
,
S.
, and
White
,
M.
,
2014
, “
The Effect of Using a Powered Exoskeleton Training Programme on Joint Range of Motion on Spinal Injured Individuals: A Pilot Study
,”
Int. J. Phys. Ther. Rehabil.
,
1
, pp.
1
5
.10.15344/2455-7498/2015/102
5.
Tan
,
C. O.
,
Battaglino
,
R. A.
, and
Morse
,
L. R.
,
2013
, “
Physical Medicine & Rehabilitation Spinal Cord Injury and Osteoporosis: Causes, Mechanisms, and Rehabilitation Strategies
,”
Int. J. Phys. Med. Rehabil. Rev
,
1
(
4
), pp.
1
5
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4238383/
6.
Alexandre
,
C.
, and
Vico
,
L.
,
2011
, “
Pathophysiology of Bone Loss in Disuse Osteoporosis
,”
Jt. Bone Spine
,
78
(
6
), pp.
572
576
.10.1016/j.jbspin.2011.04.007
7.
Lee
,
T. Q.
, and
McMahon
,
P. J.
,
2002
, “
Shoulder Biomechanics and Muscle Plasticity: Implications in Spinal Cord Injury
,”
Clin. Orthop. Relat. Res.
,
403
(
Suppl
.), pp.
S26
S36
.10.1097/00003086-200210001-00004
8.
Westerhoff
,
P.
,
Graichen
,
F.
,
Bender
,
A.
,
Halder
,
A.
,
Beier
,
A.
,
Rohlmann
,
A.
, and
Bergmann
,
G.
,
2012
, “
In Vivo Measurement of Shoulder Joint Loads During Walking With Crutches
,”
Clin. Biomech.
,
27
(
7
), pp.
711
718
.10.1016/j.clinbiomech.2012.03.004
9.
Dalyan
,
M.
,
Cardenas
,
D.
, and
Gerard
,
B.
,
1999
, “
Upper Extremity Pain After Spinal Cord Injury
,”
Spinal Cord
,
37
(
3
), pp.
191
195
.10.1038/sj.sc.3100802
10.
Cuadrado
,
J.
,
Lugris
,
U.
,
Mouzo
,
F.
, and
Michaud
,
F.
,
2019
, “
Musculo-Skeletal Modeling and Analysis for Low-Cost Active Orthosis Customization and SCI Patient Adaptation
,”
IUTAM Symposium on Intelligent Multibody Systems—Dynamics Control, Simulation
, eds. E. Zahariev and J. Cuadrado,
Springer Press
,
Berlin
, pp.
41
54
.10.1007/978-3-030-00527-6_2
11.
Moissenet
,
F.
,
Chèze
,
L.
, and
Dumas
,
R.
,
2017
, “
Individual Muscle Contributions to Ground Reaction and to Joint Contact, Ligament and Bone Forces During Normal Gait
,”
Multibody Syst. Dyn.
,
40
(
2
), pp.
193
211
., Jun.10.1007/s11044-017-9564-9
12.
Michaud
,
F.
,
Mouzo
,
F.
,
Lugrís
,
U.
, and
Cuadrado
,
J.
,
2019
, “
Energy Expenditure Estimation During Crutch-Orthosis-Assisted Gait of a Spinal-Cord-Injured Subject
,”
Front. Neurorobot.
,
13
, pp.
55
66
.
13.
Slavens
,
B. A.
,
Sturm
,
P. F.
, and
Harris
,
G. F.
,
2010
, “
Upper Extremity Inverse Dynamics Model for Crutch-Assisted Gait Assessment
,”
J. Biomech.
,
43
(
10
), pp.
2026
2031
.10.1016/j.jbiomech.2010.03.026
14.
Slavens
,
B. A.
,
Bhagchandani
,
N.
,
Wang
,
M.
,
Smith
,
P. A.
, and
Harris
,
G. F.
,
2011
, “
An Upper Extremity Inverse Dynamics Model for Pediatric Lofstrand Crutch-Assisted Gait
,”
J. Biomech.
,
44
(
11
), pp.
2162
2167
.10.1016/j.jbiomech.2011.05.012
15.
Lugris
,
U.
,
Carlin
,
J.
,
Luaces
,
A.
, and
Cuadrado
,
J.
,
2013
, “
Gait Analysis System for Spinal Cord Injured Subjects Assited by Active Orthoses and Crutches
,”
J. Multi-Body Dyn.
,
227
(
4
), pp.
363
374
.10.1177/1464419313494935
16.
Morrow
,
M. M. B.
,
Kaufman
,
K. R.
, and
An
,
K. N.
,
2010
, “
Shoulder Model Validation and Joint Contact Forces During Wheelchair Activities
,”
J. Biomech.
,
43
(
13
), pp.
2487
2492
.10.1016/j.jbiomech.2010.05.026
17.
Geisler
,
F. H.
, and
Coleman
,
W. P.
,
2010
, “
Spinal Cord Injuries
,”
Surgical Intensive Care Medicine
,
Springer US
,
Boston, MA
, pp.
137
147
.
18.
Shourijeh
,
M. S.
,
Mehrabi
,
N.
, and
McPhee
,
J.
, Apr.
2017
, “
Forward Static Optimization in Dynamic Simulation of Human Musculoskeletal Systems: A Proof-of-Concept Study
,”
J. Comput. Nonlinear Dyn.
,
12
(
5
), p.
051005
.10.1115/1.4036195
19.
Ambrósio
,
J.
,
Quental
,
C.
,
Pilarczyk
,
B.
,
Folgado
,
J.
, and
Monteiro
,
J.
,
2011
, “
Multibody Biomechanical Models of the Upper Limb
,”
Procedia IUTAM
, Vol.
2,
Waterloo, Canada
, June 5–8, pp.
4
17
.10.1016/j.piutam.2011.04.002
20.
Ou
,
Y.
,
2012
, “
An Analysis of Optimization Methods for Identifying Muscle Forces in Human Gait
,”
Universität Duisburg-Essen
,
Essen, Germany
.
21.
Michaud
,
F.
,
2020
, “
Neuromusculoskeletal Human Multibody Models for the Gait of Healthy and Spinal-Cord-Injured Subjects
,”
University of A Coruña
,
A Coruña, Spain
.
22.
F. E
,
Z.
,
1989
, “
Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control
,”
Crit. Rev. Biomed. Eng.
,
17
(
4
), pp.
359
411
.https://pubmed.ncbi.nlm.nih.gov/2676342/
23.
Janda
,
V.
,
1983
,
Muscle Function Testing
,
Butterworth-Heinemann
,
Oxford, United Kingdom
.10.1016/C2013-0-06217-2
24.
Lugrís
,
U.
,
Carlín
,
J.
,
Luaces
,
A.
, and
Cuadrado
,
J.
,
2013
, “
Gait Analysis System for Spinal Cord-Injured Subjects Assisted by Active Orthoses and Crutches
,”
Proc. Inst. Mech. Eng. Part K
,
227
(
4
), pp.
363
374
.
25.
Hof
,
A. L.
,
1997
, “
The Relationship Between Electromyogram and Muscle Force
,”
Sportverletz Sportschaden
,
11
(
3
), pp.
79
86
.10.1055/s-2007-993372
26.
Lugrís
,
U.
,
Carlín
,
J.
,
Pàmies-Vilà
,
R.
,
Font-Llagunes
,
J. M.
, and
Cuadrado
,
J.
,
2013
, “
Solution Methods for the Double-Support Indeterminacy in Human Gait
,”
Multibody Syst. Dyn.
,
30
(
3
), pp.
247
263
.10.1007/s11044-013-9363-x
27.
Vaughan
,
C. L.
,
Davis
,
B. L.
, and
O'Connor
,
J. C.
,
1999
,
Dynamics of Human Gait
, 2nd ed.,
Kiboho Publishers
,
Cape Town, South Africa
.
28.
Ambrosio
,
J. A. C.
, and
Kecskemethy
,
A.
,
2007
, “
Multibody Dynamics of Biomechanical Models for Human Motion Via Optimization
,”
Multibody Dynamics—Computational Methods and Applications
,
J. C.
Garcia Orden
,
J. M.
Goicolea
, and
J.
Cuadrado
, eds.,
Springer
,
Dordrecht
, pp.
245
270
.
29.
Dopico
,
D.
,
2016
, “
MBSLIM: Multibody Systems en Laboratorio de Ingeniería Mecánica
,”
Universidad de La Coruña
,
A Coruña, Spain
, accessed Sept. 7, 2020, http://lim.ii.udc.es/MBSLIM
30.
Delp
,
S. L.
,
Anderson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
,
Guendelman
,
E.
, and
Thelen
,
D. G.
,
2007
, “
OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Biomed. Eng.
,
54
(
11
), pp.
1940
1950
.10.1109/TBME.2007.901024
31.
Delp
,
S. L.
,
1990
,
Surgery Simulation: A Computer Graphics System to Analyze and Design Musculoskeletal Reconstructions of the Lower Limb
,
Stanford University
,
Stanford, CA
, p.
117
.
32.
Holzbaur
,
K. R. S.
,
Murray
,
W. M.
, and
Delp
,
S. L.
,
2005
, “
A Model of the Upper Extremity for Simulating Musculoskeletal Surgery and Analyzing Neuromuscular Control
,”
Ann. Biomed. Eng
,
33
(
6
), pp.
829
840
.10.1007/s10439-005-3320-7
33.
Sartori
,
M.
,
Reggiani
,
M.
,
Farina
,
D.
, and
Lloyd
,
D. G.
,
2012
, “
EMG-Driven Forward-Dynamic Estimation of Muscle Force and Joint Moment About Multiple Degrees of Freedom in the Human Lower Extremity
,”
PLoS One
,
7
(
12
), p.
e52618
.10.1371/journal.pone.0052618
34.
Mokhtarzadeh
,
H.
,
Perraton
,
L.
,
Fok
,
L.
,
Muñoz
,
M. A.
,
Clark
,
R.
,
Pivonka
,
P.
, and
Bryant
,
A. L.
,
2014
, “
A Comparison of Optimisation Methods and Knee Joint Degrees of Freedom on Muscle Force Predictions During Single-Leg Hop Landings
,”
J. Biomech.
,
47
(
12
), pp.
2863
2868
.10.1016/j.jbiomech.2014.07.027
35.
Pipeleers
,
G.
,
Demeulenaere
,
B.
,
Jonkers
,
I.
,
Spaepen
,
P.
,
Van der Perre
,
G.
,
Spaepen
,
A.
,
Swevers
,
J.
, and
De Schutter
,
J.
,
2008
, “
Dynamic Simulation of Human Motion: Numerically Efficient Inclusion of Muscle Physiology by Convex Optimization
,”
Optim. Eng.
,
9
(
3
), pp.
213
238
.10.1007/s11081-007-9010-6
36.
Michaud
,
F.
,
Lugris
,
U.
,
Ou
,
Y.
,
Cuadrado
,
J.
, and
Kecskemethy
,
A.
,
2015
, “
Influence of Muscle Recruitment Criteria on Joint Reaction Forces During Human Gait
,”
ECCOMAS Thematic Conference on Multibody Dynamics
, Barcelona, Catalonia, Spain, 29 June–2 July, pp.
1024
1031
.https://www.researchgate.net/publication/318701201_Influence_of_muscle_recruitment_criteria_on_joint_reaction_forces_during_human_gait
37.
Bohannon
,
R. W.
,
1997
, “
Comfortable and Maximum Walking Speed of Adults Aged 20-79 Years: Reference Values and Determinants
,”
Age Ageing
,
26
(
1
), pp.
15
19
.10.1093/ageing/26.1.15
38.
Barreira
,
T. V.
,
Rowe
,
D. A.
, and
Kang
,
M.
,
2010
, “
Parameters of Walking and Jogging in Healthy Young Adults
,”
Int. J. Exerc. Sci.
,
3
(
1
), pp.
4
13
.https://pureportal.strath.ac.uk/en/publications/parameters-of-walking-and-jogging-in-young-adults
39.
Konz
,
R.
,
Fatone
,
S.
, and
Gard
,
S.
,
2006
, “
Effect of Restricted Spinal Motion on Gait
,”
J. Rehabil. Res. Dev
,
43
(
2
), p.
161
.10.1682/JRRD.2004.11.0146
40.
Eitzen
,
I.
,
Fernandes
,
L.
,
Nordsletten
,
L.
, and
Risberg
,
M. A.
,
2012
, “
Sagittal Plane Gait Characteristics in Hip Osteoarthritis Patients With Mild to Moderate Symptoms Compared to Healthy Controls: A Cross-Sectional Study
,”
BMC Musculoskelet. Disord.
,
13
(
1
), p.
1
.10.1186/s12891-015-0483-8
41.
JungtäublSpicka
,
D.
,
Aurbach
,
J.
,
Süß
,
M.
,
Melzner
,
F. M.
, and
Dendorfer
,
S.
,
2018,
EMG-Based Validation of Musculoskeletal Models Considering Crosstalk
,”
Proceedings Biomdlore
,
Białystok, Poland
, June 28–30, pp
1
4
.10.1109/BIOMDLORE.2018.8467211
You do not currently have access to this content.