A nearly avascular tissue, the knee meniscus relies on diffusive transport for nutritional supply to cells. Nutrient transport depends on solute partitioning in the tissue, which governs the amount of nutrients that can enter a tissue. The purpose of the present study was to investigate the effects of mechanical strain, tissue region, and tissue composition on the partition coefficient of glucose in meniscus fibrocartilage. A simple partitioning experiment was employed to measure glucose partitioning in porcine meniscus tissues from two regions (horn and central), from both meniscal components (medial and lateral), and at three levels of compression (0%, 10%, and 20%). Partition coefficient values were correlated to strain level, water volume fraction, and glycosaminoglycan (GAG) content of tissue specimens. Partition coefficient values ranged from 0.47 to 0.91 (n = 48). Results show that glucose partition coefficient is significantly (p < 0.001) affected by compression, decreasing with increasing strain. Furthermore, we did not find a statistically significant effect of tissue when comparing medial versus lateral (p = 0.181) or when comparing central and horn regions (p = 0.837). There were significant positive correlations between tissue water volume fraction and glucose partitioning for all groups. However, the correlation between GAG content and partitioning was only significant in the lateral horn group. Determining how glucose partitioning is affected by tissue composition and loading is necessary for understanding nutrient availability and related tissue health and/or degeneration. Therefore, this study is important for better understanding the transport and nutrition-related mechanisms of meniscal degeneration.

References

1.
Englund
,
M.
,
Haugen
,
I. K.
,
Guermazi
,
A.
,
Roemer
,
F. W.
,
Niu
,
J.
,
Neogi
,
T.
,
Aliabadi
,
P.
, and
Felson
,
D. T.
,
2016
, “
Evidence That Meniscus Damage may be a Component of Osteoarthritis: The Framingham Study
,”
Osteoarthritis Cartilage
,
24
(
2
), pp.
270
273
.
2.
Murphy
,
L.
, and
Helmick
,
C. G.
,
2012
, “
The Impact of Osteoarthritis in the United States: A Population-Health Perspective
,”
Am. J. Nurs.
,
112
(
3 Suppl 1
), pp.
S13
S19
.
3.
Sweigart
,
M. A.
, and
Athanasiou
,
K. A.
,
2001
, “
Toward Tissue Engineering of the Knee Meniscus
,”
Tissue Eng.
,
7
(
2
), pp.
111
129
.
4.
McDevitt
,
C. A.
, and
Webber
,
R. J.
,
1990
, “
The Ultrastructure and Biochemistry of Meniscal Cartilage
,”
Clin. Orthop. Relat. Res.
,
252
, pp.
8
18
.
5.
Danzig
,
L. A.
,
Hargens
,
A. R.
,
Gershuni
,
D. H.
,
Skyhar
,
M. J.
,
Sfakianos
,
P. N.
, and
Akeson
,
W. H.
,
1987
, “
Increased Transsynovial Transport With Continuous Passive Motion
,”
J. Orthop. Res.
,
5
(
3
), pp.
409
413
.
6.
Makris
,
E. A.
,
Hadidi
,
P.
, and
Athanasiou
,
K. A.
,
2011
, “
The Knee Meniscus: Structure-Function, Pathophysiology, Current Repair Techniques, and Prospects for Regeneration
,”
Biomaterials
,
32
(
30
), pp.
7411
7431
.
7.
Heywood
,
H. K.
,
Bader
,
D. L.
, and
Lee
,
D. A.
,
2006
, “
Rate of Oxygen Consumption by Isolated Articular Chondrocytes is Sensitive to Medium Glucose Concentration
,”
J. Cell. Physiol.
,
206
(
2
), pp.
402
410
.
8.
Bibby
,
S. R.
, and
Urban
,
J. P.
,
2004
, “
Effect of Nutrient Deprivation on the Viability of Intervertebral Disc Cells
,”
Eur. Spine J.
,
13
(
8
), pp.
695
701
.
9.
Holm
,
S.
,
Maroudas
,
A.
,
Urban
,
J. P.
,
Selstam
,
G.
, and
Nachemson
,
A.
,
1981
, “
Nutrition of the Intervertebral Disc: Solute Transport and Metabolism
,”
Connect. Tissue Res.
,
8
(
2
), pp.
101
119
.
10.
Cisewski
,
S. E.
,
Zhang
,
L.
,
Kuo
,
J.
,
Wright
,
G. J.
,
Wu
,
Y.
,
Kern
,
M. J.
, and
Yao
,
H.
,
2015
, “
The Effects of Oxygen Level and Glucose Concentration on the Metabolism of Porcine TMJ Disc Cells
,”
Osteoarthritis Cartilage
,
23
(
10
), pp.
1790
1796
.
11.
Richardson
,
S.
,
Neama
,
G.
,
Phillips
,
T.
,
Bell
,
S.
,
Carter
,
S. D.
,
Moley
,
K. H.
,
Moley
,
J. F.
,
Vannucci
,
S. J.
, and
Mobasheri
,
A.
,
2003
, “
Molecular Characterization and Partial cDNA Cloning of Facilitative Glucose Transporters Expressed in Human Articular Chondrocytes; Stimulation of 2-Deoxyglucose Uptake by IGF-I and Elevated MMP-2 Secretion by Glucose Deprivation
,”
Osteoarthritis Cartilage
,
11
(
2
), pp.
92
101
.
12.
Heywood
,
H. K.
,
Bader
,
D. L.
, and
Lee
,
D. A.
,
2006
, “
Glucose Concentration and Medium Volume Influence Cell Viability and Glycosaminoglycan Synthesis in Chondrocyte-Seeded Alginate Constructs
,”
Tissue Eng.
,
12
(
12
), pp.
3487
3496
.
13.
Fetter
,
N. L.
,
Leddy
,
H. A.
,
Guilak
,
F.
, and
Nunley
,
J. A.
,
2006
, “
Composition and Transport Properties of Human Ankle and Knee Cartilage
,”
J. Orthop. Res.
,
24
(
2
), pp.
211
219
.
14.
Maroudas
,
A.
,
1968
, “
Physicochemical Properties of Cartilage in the Light of Ion Exchange Theory
,”
Biophys. J.
,
8
(
5
), pp.
575
595
.
15.
Maroudas
,
A.
,
Stockwell
,
R. A.
,
Nachemson
,
A.
, and
Urban
,
J.
,
1975
, “
Factors Involved in the Nutrition of the Human Lumbar Intervertebral Disc: Cellularity and Diffusion of Glucose In Vitro
,”
J. Anat.
,
120
(
1
), pp.
113
130
.
16.
Maroudas
,
A.
,
1976
, “
Transport of Solutes Through Cartilage: Permeability to Large Molecules
,”
J. Anat.
,
122
(
2
), pp.
335
347
.
17.
Torzilli
,
P. A.
,
Grande
,
D. A.
, and
Arduino
,
J. M.
,
1998
, “
Diffusive Properties of Immature Articular Cartilage
,”
J. Biomed. Mater. Res.
,
40
(
1
), pp.
132
138
.
18.
Quinn
,
T. M.
,
Morel
,
V.
, and
Meister
,
J. J.
,
2001
, “
Static Compression of Articular Cartilage can Reduce Solute Diffusivity and Partitioning: Implications for the Chondrocyte Biological Response
,”
J. Biomech.
,
34
(
11
), pp.
1463
1469
.
19.
Quinn
,
T. M.
,
Kocian
,
P.
, and
Meister
,
J. J.
,
2000
, “
Static Compression is Associated With Decreased Diffusivity of Dextrans in Cartilage Explants
,”
Arch. Biochem. Biophys.
,
384
(
2
), pp.
327
334
.
20.
Nimer
,
E.
,
Schneiderman
,
R.
, and
Maroudas
,
A.
,
2003
, “
Diffusion and Partition of Solutes in Cartilage Under Static Load
,”
Biophys. Chem.
,
106
(
2
), pp.
125
146
.
21.
Garcia
,
A. M.
,
Szasz
,
N.
,
Trippel
,
S. B.
,
Morales
,
T. I.
,
Grodzinsky
,
A. J.
, and
Frank
,
E. H.
,
2003
, “
Transport and Binding of Insulin-Like Growth Factor I Through Articular Cartilage
,”
Arch. Biochem. Biophys.
,
415
(
1
), pp.
69
79
.
22.
Roberts
,
S.
,
Urban
,
J. P.
,
Evans
,
H.
, and
Eisenstein
,
S. M.
,
1996
, “
Transport Properties of the Human Cartilage Endplate in Relation to Its Composition and Calcification
,”
Spine
,
21
(
4
), pp.
415
420
.
23.
Schneiderman
,
R.
,
Snir
,
E.
,
Popper
,
O.
,
Hiss
,
J.
,
Stein
,
H.
, and
Maroudas
,
A.
,
1995
, “
Insulin-Like Growth Factor-I and Its Complexes in Normal Human Articular Cartilage: Studies of Partition and Diffusion
,”
Arch. Biochem. Biophys.
,
324
(
1
), pp.
159
172
.
24.
Torzilli
,
P. A.
,
1993
, “
Effects of Temperature, Concentration and Articular Surface Removal on Transient Solute Diffusion in Articular Cartilage
,”
Med. Biol. Comput. Eng.
,
31
(Suppl. 1), pp.
S93
S98
.
25.
Jackson
,
A. R.
,
Yuan
,
T. Y.
,
Huang
,
C. Y.
,
Brown
,
M. D.
, and
Gu
,
W. Y.
,
2012
, “
Nutrient Transport in Human Annulus Fibrosus is Affected by Compressive Strain and Anisotropy
,”
Ann. Biomed. Eng.
,
40
(
12
), pp.
2551
2558
.
26.
Changoor
,
A.
,
Fereydoonzad
,
L.
,
Yaroshinsky
,
A.
, and
Buschmann
,
M. D.
,
2010
, “
Effects of Refrigeration and Freezing on the Electromechanical and Biomechanical Properties of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
132
(
6
), p.
064502
.
27.
Gu
,
W. Y.
,
Lewis
,
B.
,
Lai
,
W. M.
,
Ratcliffe
,
A.
, and
Mow
,
V. C.
,
1996
, “
A Technique for Measuring Volume and True Density of the Solid Matrix of Cartilaginous Tissues
,”
J. Biomech.
,
33
, pp.
89
90
.
28.
Jackson
,
A. R.
,
Yuan
,
T. Y.
,
Huang
,
C. Y.
,
Travascio
,
F.
, and
Gu
,
W. Y.
,
2008
, “
Effect of Compression and Anisotropy on the Diffusion of Glucose in Annulus Fibrosus
,”
Spine
,
33
(
1
), pp.
1
7
.
29.
Farndale
,
R. W.
,
Sayers
,
C. A.
, and
Barrett
,
A. J.
,
1982
, “
A Direct Spectrophotometric Microassay for Sulfated Glycosaminoglycans in Cartilage Cultures
,”
Connect. Tissue Res.
,
9
(
4
), pp.
247
248
.
30.
Jackson
,
A. R.
, and
Gu
,
W. Y.
,
2009
, “
Transport Properties of Cartilaginous Tissues
,”
Curr. Rheumatol. Rev.
,
5
(
1
), pp.
40
50
.
31.
Travascio
,
F.
,
Jackson
,
A. R.
,
Brown
,
M. D.
, and
Gu
,
W. Y.
,
2009
, “
Relationship Between Solute Transport Properties and Tissue Morphology in Human Annulus Fibrosus
,”
J. Orthop. Res.
,
27
(
12
), pp.
1625
1630
.
32.
Martin Seitz
,
A.
,
Galbusera
,
F.
,
Krais
,
C.
,
Ignatius
,
A.
, and
Durselen
,
L.
,
2013
, “
Stress-Relaxation Response of Human Menisci Under Confined Compression Conditions
,”
J. Mech. Behav. Biomed. Mater.
,
26
, pp.
68
80
.
33.
Eckstein
,
F.
,
Lemberger
,
B.
,
Stammberger
,
T.
,
Englmeier
,
K. H.
, and
Reiser
,
M.
,
2000
, “
Patellar Cartilage Deformation In Vivo After Static Versus Dynamic Loading
,”
J. Biomech.
,
33
(
7
), pp.
819
825
.
34.
Chia
,
H. N.
, and
Hull
,
M. L.
,
2008
, “
Compressive Moduli of the Human Medial Meniscus in the Axial and Radial Directions at Equilibrium and at a Physiological Strain Rate
,”
J. Orthop. Res.
,
26
(
7
), pp.
951
956
.
35.
Yang
,
N. H.
,
Canavan
,
P. K.
,
Nayeb-Hashemi
,
H.
,
Najafi
,
B.
, and
Vaziri
,
A.
,
2010
, “
Protocol for Constructing Subject-Specific Biomechanical Models of Knee Joint
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
5
), pp.
589
603
.
36.
O'Hara
,
B. P.
,
Urban
,
J. P.
, and
Maroudas
,
A.
,
1990
, “
Influence of Cyclic Loading on the Nutrition of Articular Cartilage
,”
Ann. Rheum. Dis.
,
49
(
7
), pp.
536
539
.
37.
Katz
,
M. M.
,
Hargens
,
A. R.
, and
Garfin
,
S. R.
,
1986
, “
Intervertebral Disc Nutrition. Diffusion Versus Convection
,”
Clin. Orthop.
,
210
, pp.
243
245
.
38.
Urban
,
J. P.
,
Holm
,
S.
,
Maroudas
,
A.
, and
Nachemson
,
A.
,
1982
, “
Nutrition of the Intervertebral Disc: Effect of Fluid Flow on Solute Transport
,”
Clin. Orthop.
,
170
, pp.
296
302
.
39.
Upton
,
M. L.
,
Chen
,
J.
,
Guilak
,
F.
, and
Setton
,
L. A.
,
2003
, “
Differential Effects of Static and Dynamic Compression on Meniscal Cell Gene Expression
,”
J. Orthop. Res.
,
21
(
6
), pp.
963
969
.
40.
Imler
,
S. M.
,
Doshi
,
A. N.
, and
Levenston
,
M. E.
,
2004
, “
Combined Effects of Growth Factors and Static Mechanical Compression on Meniscus Explant Biosynthesis
,”
Osteoarthritis Cartilage
,
12
(
9
), pp.
736
744
.
41.
Kleinhans
,
K. L.
,
Jaworski
,
L. M.
,
Schneiderbauer
,
M. M.
, and
Jackson
,
A. R.
,
2015
, “
Effect of Static Compressive Strain, Anisotropy, and Tissue Region on the Diffusion of Glucose in Meniscus Fibrocartilage
,”
ASME J. Biomech. Eng.
,
137
(
10
), p.
101004
.
42.
Kleinhans
,
K. L.
,
McMahan
,
J. B.
, and
Jackson
,
A. R.
,
2016
, “
Electrical Conductivity and Ion Diffusion in Porcine Meniscus: Effects of Strain, Anisotropy, and Tissue Region
,”
J. Biomech.
,
49
(
13
), pp.
3041
3046
.
43.
Sweigart
,
M. A.
,
Zhu
,
C. F.
,
Burt
,
D. M.
,
DeHoll
,
P. D.
,
Agrawal
,
C. M.
,
Clanton
,
T. O.
, and
Athanasiou
,
K. A.
,
2004
, “
Intraspecies and Interspecies Comparison of the Compressive Properties of the Medial Meniscus
,”
Ann. Biomed. Eng.
,
32
(
11
), pp.
1569
1579
.
44.
Burstein
,
D.
,
Gray
,
M. L.
,
Hartman
,
A. L.
,
Gipe
,
R.
, and
Foy
,
B. D.
,
1993
, “
Diffusion of Small Solutes in Cartilage as Measured by Nuclear Magnetic Resonance (NMR) Spectroscopy and Imaging
,”
J. Orthop. Res.
,
11
(
4
), pp.
465
478
.
45.
Maroudas
,
A.
,
1970
, “
Distribution and Diffusion of Solutes in Articular Cartilage
,”
Biophys. J.
,
10
(
5
), pp.
365
379
.
46.
Torzilli
,
P. A.
,
Arduino
,
J. M.
,
Gregory
,
J. D.
, and
Bansal
,
M.
,
1997
, “
Effect of Proteoglycan Removal on Solute Mobility in Articular Cartilage
,”
J. Biomech.
,
30
(
9
), pp.
895
902
.
47.
Almarza
,
A. J.
, and
Athanasiou
,
K. A.
,
2004
, “
Design Characteristics for the Tissue Engineering of Cartilaginous Tissues
,”
Ann. Biomed. Eng.
,
32
(
1
), pp.
2
17
.
48.
Killian
,
M. L.
,
Lepinski
,
N. M.
,
Haut
,
R. C.
, and
Haut Donahue
,
T. L.
,
2010
, “
Regional and Zonal Histo-Morphological Characteristics of the Lapine Menisci
,”
Anat. Rec.
,
293
(
12
), pp.
1991
2000
.
49.
Sanchez-Adams
,
J.
,
Willard
,
V. P.
, and
Athanasiou
,
K. A.
,
2011
, “
Regional Variation in the Mechanical Role of Knee Meniscus Glycosaminoglycans
,”
J. Appl. Physiol.
,
111
(
6
), pp.
1590
1596
.
50.
Sweigart
,
M. A.
, and
Athanasiou
,
K. A.
,
2005
, “
Biomechanical Characteristics of the Normal Medial and Lateral Porcine Knee Menisci
,”
Proc. Inst. Mech. Eng., Part H
,
219
(
1
), pp.
53
62
.
51.
Joshi
,
M. D.
,
Suh
,
J. K.
,
Marui
,
T.
, and
Woo
,
S. L.
,
1995
, “
Interspecies Variation of Compressive Biomechanical Properties of the Meniscus
,”
J. Biomed. Mater. Res.
,
29
(
7
), pp.
823
828
.
52.
Chu
,
C. R.
,
Szczodry
,
M.
, and
Bruno
,
S.
,
2010
, “
Animal Models for Cartilage Regeneration and Repair
,”
Tissue Eng., Part B
,
16
(
1
), pp.
105
115
.
53.
Di Giancamillo
,
A.
,
Deponti
,
D.
,
Addis
,
A.
,
Domeneghini
,
C.
, and
Peretti
,
G. M.
,
2014
, “
Meniscus Maturation in the Swine Model: Changes Occurring Along With Anterior to Posterior and Medial to Lateral Aspect During Growth
,”
J. Cell. Mol. Med.
,
18
(
10
), pp.
1964
1974
.
You do not currently have access to this content.