Filiform mechanosensory hairs of crickets are of great interest to engineers because of the hairs' highly sensitive response to low-velocity air-currents. In this study, we analyze the biomechanical properties of filiform hairs of the cercal sensory system of a common house cricket. The cercal sensory system consists of two antennalike appendages called cerci that are situated at the rear of the cricket's abdomen. Each cercus is covered with 500–750 flow sensitive filiform mechanosensory hairs. Each hair is embedded in a complex viscoelastic socket that acts as a spring and dashpot system and guides the movement of the hair. When a hair deflects due to the drag force induced on its length by a moving air-current, the spiking activity of the neuron that innervates the hair changes and the combined spiking activity of all hairs is extracted by the cercal sensory system. Filiform hairs have been experimentally studied by researchers, though the basis for the hairs' biomechanical characteristics is not fully understood. The socket structure has not been analyzed experimentally or theoretically from a mechanical standpoint, and the characterization that exists is mathematical in nature and only provides a very rudimentary approximation of the socket's spring nature. This study aims to understand and physically characterize the socket's behavior and interaction with the filiform hair by examining hypotheses about the hair and socket biomechanics. A three-dimensional computer-aided design (CAD) model was first created using confocal microscopy images of the hair and socket structure of the cricket, and then finite-element analyses (FEAs) based on the physical conditions that the insect experiences were simulated. The results show that the socket can act like a spring; however, it has two-tier rotational spring constants during pre- and postcontacts of iris and hair bulge due to its constitutive nonstandard geometric shapes.

References

1.
Thurm
,
U.
,
Erler
,
G.
,
Godde
,
J.
,
Kastrup
,
H.
, and
Keil
,
T.
,
1983
, “
Cilia Specialized for Mechanoreception
,”
J. Submicrosc. Cytol.
,
15
(
1
), pp.
151
155
.
2.
Keil
,
T. A.
, and
Steinbrecht
,
R. A.
,
1984
, “
Mechanosensitive and Olfactory Sensilla of Insects
,”
Insect Ultrastructure
, Vol.
2
,
R. C.
King
and
H.
Akai
, eds.,
Plenum Press
,
New York
, pp.
477
516
.
3.
Keil
,
T. A.
,
1997
, “
Functional Morphology of Insect Mechanoreceptors
,”
Microsc. Res. Tech.
,
39
(
6
), pp.
506
531
.
4.
Palka
,
J.
,
Levine
,
R.
, and
Schubiger
,
M.
,
1977
, “
Cercus-to-Giant Interneuron System of Crickets. 1. Some Attributes of Sensory Cells
,”
J. Comp. Physiol.
,
119
(
3
), pp.
267
283
.
5.
Shimozawa
,
T.
, and
Kanou
,
M.
,
1984
, “
Varieties of Filiform Hairs: Fractionation by Sensory Afferents and Cercal Interneurons of a Cricket
,”
J. Comp. Physiol.
,
155
(
4
), pp.
485
493
.
6.
Jacobs
,
G. A.
,
Miller
,
J. P.
, and
Aldworth
,
Z. A.
,
2008
, “
Computational Mechanisms of Mechanosensory Processing in the Cricket
,”
J. Exp. Biol.
,
211
(
11
), pp.
1819
1828
.
7.
Gnatzy
,
W.
, and
Tautz
,
J.
,
1980
, “
Ultrastructure and Mechanical Properties of an Insect Mechanoreceptor: Stimulus-Transmitting Structures and Sensory Apparatus of the Cercal Filiform Hairs of Gryllus
,”
Cell Tissue Res.
,
213
(
3
), pp.
441
463
.
8.
Landolfa
,
M. A.
, and
Miller
,
J. P.
,
1995
, “
Stimulus-Response Properties of Cricket Cercal Filiform Receptors
,”
J. Comp. Physiol., A
.,
177
(
6
), pp.
749
757
.
9.
Magal
,
C.
,
Dangles
,
O.
,
Caparroy
,
P.
, and
Casas
,
J.
,
2006
, “
Hair Canopy of Cricket Sensory System Tuned to Predator Signals
,”
J. Theor. Biol.
,
241
(
3
), pp.
459
466
.
10.
Steinmann
,
T.
,
Casas
,
J.
,
Krijnen
,
G.
, and
Dangles
,
O.
,
2006
, “
Air-Flow Sensitive Hairs: Boundary Layers in Oscillatory Flows Around Arthropod Appendages
,”
J. Exp. Biol.
,
209
(
21
), pp.
4398
4408
.
11.
Cummins
,
B.
,
Gedeon
,
T.
,
Klapper
,
I.
, and
Cortez
,
R.
,
2007
, “
Interaction Between Arthropod Filiform Hairs in a Fluid Environment
,”
J. Theor. Biol.
,
247
(
2
), pp.
266
280
.
12.
Dangles
,
O.
,
Steinmann
,
T.
,
Pierre
,
D.
,
Vannier
,
F.
, and
Casas
,
J.
,
2008
, “
Relative Contributions of Organ Shape and Receptor Arrangement to the Design of Crickets Cercal System
,”
J. Comp. Physiol., A
,
194
(
7
), pp.
653
663
.
13.
Heys
,
J.
,
Gedeon
,
T.
,
Knott
,
B. C.
, and
Kim
,
Y.
,
2008
, “
Modeling Arthropod Hair Motion Using the Penalty Immersed Boundary Method
,”
J. Biomech.
,
41
(
5
), pp.
977
984
.
14.
Casas
,
J.
, and
Dangles
,
O.
,
2010
, “
Physical Ecology of Fluid Flow Sensing in Arthropods
,”
Annu. Rev. Entomol.
,
55
(
1
), pp.
505
520
.
15.
Cummins
,
B.
, and
Gedeon
,
T.
,
2012
, “
Assessing the Mechanical Response of Groups of Arthropod Filiform Flow Sensors
,”
Frontiers in Sensing: From Biology to Engineering
,
F. G.
Barth
,
J. A. C.
Humphrey
, and
M. V.
Srinivasan
, eds.,
Springer
,
Wien, New York
, pp.
239
250
.
16.
Czaplewski
,
D. A.
,
Ilic
,
B. R.
,
Zalalutdinov
,
M.
,
Olbricht
,
W. L.
,
Zehnder
,
A. T.
, and
Craighead
,
H. G.
,
2004
, “
A Micromechanical Flow Sensor for Microfluidic Applications
,”
J. Microelectromech. Syst.
,
13
(
4
), pp.
576
585
.
17.
Krijnen
,
G.
,
Lammerink
,
T.
,
Wiegerink
,
R.
, and
Casas
,
J.
,
2007
, “
Cricket Inspired Flow-Sensor Arrays
,”
IEEE
Sensors Conference
, Atlanta, GA, Oct. 28–31, pp.
539
546
.
18.
Casas
,
J.
,
Liu
,
C.
, and
Krijnen
,
G. J. M.
,
2012
, “
Biomimetic Flow Sensors
,”
Encyclopedia of Nanotechnology
,
B.
Bhushan
, ed.,
Springer
,
The Netherlands
, pp.
264
276
.
19.
Dagamseh
,
A. M. K.
,
Wiegerink
,
R. J.
,
Lammerink
,
T. S. J.
, and
Krijnen
,
G. J. M.
,
2012
, “
Towards a High-Resolution Flow Camera Using Artificial Hair Sensor Arrays for Flow Pattern Observations
,”
Bioinspiration Biomimetics
,
7
(
4
), p.
046009
.
20.
Droogendijk
,
H.
,
Casas
,
J.
,
Steinmann
,
T.
, and
Krijnen
,
G. J. M.
,
2015
, “
Performance Assessment of Bio-Inspired Systems: Flow Sensing MEMS Hairs
,”
Bioinspiration Biomimetics
,
10
(
1
), p.
016001
.
21.
Edwards
,
J. S.
, and
Palka
,
J.
,
1974
, “
Cerci and Abdominal Giant Fibers of House Cricket, Acheta-Domesticus.1. Anatomy and Physiology of Normal Adults
,”
Proc. R. Soc. London, Ser. A
,
185
(
1078
), pp.
83
103
.
22.
Miller
,
J. P.
,
Krueger
,
S.
,
Heys
,
J. J.
, and
Gedeon
,
T.
,
2011
, “
Quantitative Characterization of the Filiform Mechanosensory Hair Array on the Cricket Cercus
,”
PLoS One
,
6
(
11
), p.
e27873
.
23.
Bitplane
,
2014
, “
Imaris
,”
Bitplane USA
, Concord, MA.
24.
Joshi
,
K.
,
2012
, “
Biomechanical Analysis of a Cricket Filiform Hair Socket Under Low Velocity Air Currents
,” M.S. thesis,
Montana State University
,
Bozeman, MT
.
25.
Shimozawa
,
T.
,
Kumagai
,
T.
, and
Baba
,
Y.
,
1998
, “
Structural Scaling and Functional Design of the Cercal Wind-Receptor Hairs of Cricket
,”
J. Comp. Physiol., A
,
183
(
2
), pp.
171
186
.
26.
Vincent
,
J.
, and
Wegst
,
U. G. K.
,
2004
, “
Design and Mechanical Properties of Insect Cuticle
,”
Arthropod Struct. Dev.
,
33
(
3
), pp.
187
199
.
27.
Müller
,
M.
,
Olek
,
M.
,
Giersig
,
M.
, and
Schmitz
,
H.
,
2008
, “
Micromechanical Properties of Consecutive Layers in Specialized Insect Cuticle: The Gula of Pachnoda marginata (Coleoptera, Scarabaeidae) and the Infrared Sensilla of Melanophila acuminata (Coleoptera, Buprestidae)
,”
J. Exp. Biol.
,
211
(
16
), pp.
2576
2583
.
28.
Dechant
,
H. E.
,
Rammerstorfer
,
F. G.
, and
Barth
,
F. G.
,
2001
, “
Arthropod Touch Reception: Stimulus Transformation and Finite Element Model of Spider Tactile Hairs
,”
J. Comp. Physiol., A
,
187
(
4
), pp.
313
322
.
You do not currently have access to this content.