Modeling complex knee biomechanics is a continual challenge, which has resulted in many models of varying levels of quality, complexity, and validation. Beyond modeling healthy knees, accurately mimicking pathologic knee mechanics, such as after cruciate rupture or meniscectomy, is difficult. Experimental tests of knee laxity can provide important information about ligament engagement and overall contributions to knee stability for development of subject-specific models to accurately simulate knee motion and loading. Our objective was to provide combined experimental tests and finite-element (FE) models of natural knee laxity that are subject-specific, have one-to-one experiment to model calibration, simulate ligament engagement in agreement with literature, and are adaptable for a variety of biomechanical investigations (e.g., cartilage contact, ligament strain, in vivo kinematics). Calibration involved perturbing ligament stiffness, initial ligament strain, and attachment location until model-predicted kinematics and ligament engagement matched experimental reports. Errors between model-predicted and experimental kinematics averaged <2 deg during varus–valgus (VV) rotations, <6 deg during internal–external (IE) rotations, and <3 mm of translation during anterior–posterior (AP) displacements. Engagement of the individual ligaments agreed with literature descriptions. These results demonstrate the ability of our constraint models to be customized for multiple individuals and simultaneously call attention to the need to verify that ligament engagement is in good general agreement with literature. To facilitate further investigations of subject-specific or population based knee joint biomechanics, data collected during the experimental and modeling phases of this study are available for download by the research community.

References

1.
Beillas
,
P.
,
Papaioannou
,
G.
,
Tashman
,
S.
, and
Yang
,
K. H.
,
2004
, “
A New Method to Investigate In Vivo Knee Behavior Using a Finite Element Model of the Lower Limb
,”
J. Biomech.
,
37
(
7
), pp.
1019
1030
.
2.
Bendjaballah
,
M. Z.
,
Shirazi-Adl
,
A.
, and
Zukor
,
D. J.
,
1997
, “
Finite Element Analysis of Human Knee Joint in Varus-Valgus
,”
Clin. Biomech. (Bristol, Avon)
,
12
(
3
), pp.
139
148
.
3.
Gardiner
,
J. C.
, and
Weiss
,
J. A.
,
2003
, “
Subject-Specific Finite Element Analysis of the Human Medial Collateral Ligament During Valgus Knee Loading
,”
J. Orthop. Res.
,
21
(
6
), pp.
1098
1106
.
4.
Halloran
,
J. P.
,
Petrella
,
A. J.
, and
Rullkoetter
,
P. J.
,
2005
, “
Explicit Finite Element Modeling of Total Knee Replacement Mechanics
,”
J. Biomech.
,
38
(
2
), pp.
323
331
.
5.
Blankevoort
,
L.
, and
Huiskes
,
R.
,
1996
, “
Validation of a Three-Dimensional Model of the Knee
,”
J. Biomech.
,
29
(
7
), pp.
955
961
.
6.
Kiapour
,
A.
,
Kiapour
,
A. M.
,
Kaul
,
V.
,
Quatman
,
C. E.
,
Wordeman
,
S. C.
,
Hewett
,
T. E.
,
Demetropoulos
,
C. K.
, and
Goel
, V
. K.
,
2014
, “
Finite Element Model of the Knee for Investigation of Injury Mechanisms: Development and Validation
,”
ASME J. Biomech. Eng.
,
136
(
1
), p.
011002
.
7.
Mootanah
,
R.
,
Imhauser
,
C. W.
,
Reisse
,
F.
,
Carpanen
,
D.
,
Walker
,
R. W.
,
Koff
,
M. F.
,
Lenhoff
,
M. W.
,
Rozbruch
,
S. R.
,
Fragomen
,
A. T.
,
Dewan
,
Z.
,
Kirane
,
Y. M.
,
Cheah
,
K.
,
Dowell
,
J. K.
, and
Hillstrom
,
H. J.
,
2014
, “
Development and Validation of a Computational Model of the Knee Joint for the Evaluation of Surgical Treatments for Osteoarthritis
,”
Comput. Methods Biomech. Biomed. Eng.
,
17
(
13
), pp.
1502
1517
.
8.
Pena
,
E.
,
Calvo
,
B.
,
Martinez
,
M. A.
, and
Doblare
,
M.
,
2006
, “
A Three-Dimensional Finite Element Analysis of the Combined Behavior of Ligaments and Menisci in the Healthy Human Knee Joint
,”
J. Biomech.
,
39
(
9
), pp.
1686
1701
.
9.
Shelburne
,
K. B.
,
Torry
,
M. R.
, and
Pandy
,
M. G.
,
2006
, “
Contributions of Muscles, Ligaments, and the Ground-Reaction Force to Tibiofemoral Joint Loading During Normal Gait
,”
J. Orthop. Res.
,
24
(
10
), pp.
1983
1990
.
10.
Baldwin
,
M. A.
,
Clary
,
C. W.
,
Fitzpatrick
,
C. K.
,
Deacy
,
J. S.
,
Maletsky
,
L. P.
, and
Rullkoetter
,
P. J.
,
2012
, “
Dynamic Finite Element Knee Simulation for Evaluation of Knee Replacement Mechanics
,”
J. Biomech.
,
45
(
3
), pp.
474
483
.
11.
Yang
,
Z.
,
Wickwire
,
A. C.
, and
Debski
,
R. E.
,
2010
, “
Development of a Subject-Specific Model to Predict the Forces in the Knee Ligaments at High Flexion Angles
,”
Med. Biol. Eng. Comput.
,
48
(
11
), pp.
1077
1085
.
12.
Blankevoort
,
L.
,
Huiskes
,
R.
, and
de Lange
,
A.
,
1988
, “
The Envelope of Passive Knee Joint Motion
,”
J. Biomech.
,
21
(
9
), pp.
705
720
.
13.
Cyr
,
A. J.
,
Shalhoub
,
S. S.
,
Fitzwater
,
F. G.
,
Ferris
,
L. A.
, and
Maletsky
,
L. P.
,
2015
, “
Mapping of Contributions From Collateral Ligaments to Overall Knee Joint Constraint: An Experimental Cadaveric Study
,”
ASME J. Biomech. Eng.
,
137
(
6
), p.
061006
.
14.
Hughston
,
J. C.
,
Andrews
,
J. R.
,
Cross
,
M. J.
, and
Moschi
,
A.
,
1976
, “
Classification of Knee Ligament Instabilities. Part I. The Medial Compartment and Cruciate Ligaments
,”
J. Bone Jt. Surg. Am.
,
58
(
2
), pp.
159
172
.
15.
Robinson
,
J. R.
,
Bull
,
A. M.
,
Thomas
,
R. R.
, and
Amis
,
A. A.
,
2006
, “
The Role of the Medial Collateral Ligament and Posteromedial Capsule in Controlling Knee Laxity
,”
Am. J. Sports Med.
,
34
(
11
), pp.
1815
1823
.
16.
Seering
,
W. P.
,
Piziali
,
R. L.
,
Nagel
,
D. A.
, and
Schurman
,
D. J.
,
1980
, “
The Function of the Primary Ligaments of the Knee in Varus-Valgus and Axial Rotation
,”
J. Biomech.
,
13
(
9
), pp.
785
794
.
17.
Cyr
,
A. J.
, and
Maletsky
,
L. P.
,
2015
, “
Technical Note: A Multi-Dimensional Description of Knee Laxity Using Radial Basis Functions
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
15
), pp.
1674
1679
.
18.
Grood
,
E. S.
, and
Suntay
,
W. J.
,
1983
, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
,
105
(
2
), pp.
136
144
.
19.
Baldwin
,
M. A.
,
Laz
,
P. J.
,
Stowe
,
J. Q.
, and
Rullkoetter
,
P. J.
,
2009
, “
Efficient Probabilistic Representation of Tibiofemoral Soft Tissue Constraint
,”
Comput. Methods Biomech. Biomed. Eng.
,
12
(
6
), pp.
651
659
.
20.
Fischer
,
R. A.
,
Arms
,
S. W.
,
Johnson
,
R. J.
, and
Pope
,
M. H.
,
1985
, “
The Functional Relationship of the Posterior Oblique Ligament to the Medial Collateral Ligament of the Human Knee
,”
Am. J. Sports Med.
,
13
(
6
), pp.
390
397
.
21.
Hughston
,
J. C.
, and
Eilers
,
A. F.
,
1973
, “
The Role of the Posterior Oblique Ligament in Repairs of Acute Medial (Collateral) Ligament Tears of the Knee
,”
J. Bone Jt. Surg. Am.
,
55
(
5
), pp.
923
940
.
22.
LaPrade
,
R. F.
,
Tso
,
A.
, and
Wentorf
,
F. A.
,
2004
, “
Force Measurements on the Fibular Collateral Ligament, Popliteofibular Ligament, and Popliteus Tendon to Applied Loads
,”
Am. J. Sports Med.
,
32
(
7
), pp.
1695
1701
.
23.
Lim
,
H. C.
,
Bae
,
J. H.
,
Bae
,
T. S.
,
Moon
,
B. C.
,
Shyam
,
A. K.
, and
Wang
,
J. H.
,
2012
, “
Relative Role Changing of Lateral Collateral Ligament on the Posterolateral Rotatory Instability According to the Knee Flexion Angles: A Biomechanical Comparative Study of Role of Lateral Collateral Ligament and Popliteofibular Ligament
,”
Arch. Orthop. Trauma Surg.
,
132
(
11
), pp.
1631
1636
.
24.
Maynard
,
M. J.
,
Deng
,
X.
,
Wickiewicz
,
T. L.
, and
Warren
,
R. F.
,
1996
, “
The Popliteofibular Ligament. Rediscovery of a Key Element in Posterolateral Stability
,”
Am. J. Sports Med.
,
24
(
3
), pp.
311
316
.
25.
Shahane
,
S. A.
,
Ibbotson
,
C.
,
Strachan
,
R.
, and
Bickerstaff
,
D. R.
,
1999
, “
The Popliteofibular Ligament. An Anatomical Study of the Posterolateral Corner of the Knee
,”
J. Bone Jt. Surg. Br.
,
81
(
4
), pp.
636
642
.
26.
Ishigooka
,
H.
,
Sugihara
,
T.
,
Shimizu
,
K.
,
Aoki
,
H.
, and
Hirata
,
K.
,
2004
, “
Anatomical Study of the Popliteofibular Ligament and Surrounding Structures
,”
J. Orthop. Sci.
,
9
(
1
), pp.
51
58
.
27.
Claes
,
S.
,
Vereecke
,
E.
,
Maes
,
M.
,
Victor
,
J.
,
Verdonk
,
P.
, and
Bellemans
,
J.
,
2013
, “
Anatomy of the Anterolateral Ligament of the Knee
,”
J. Anat.
,
223
(
4
), pp.
321
328
.
28.
Vincent
,
J. P.
,
Magnussen
,
R. A.
,
Gezmez
,
F.
,
Uguen
,
A.
,
Jacobi
,
M.
,
Weppe
,
F.
,
Al-Saati
,
M. F.
,
Lustig
,
S.
,
Demey
,
G.
,
Servien
,
E.
, and
Neyret
,
P.
,
2012
, “
The Anterolateral Ligament of the Human Knee: An Anatomic and Histologic Study
,”
Knee Surg. Sports Traumatol. Arthroscopy
,
20
(
1
), pp.
147
152
.
29.
Arms
,
S.
,
Boyle
,
J.
,
Johnson
,
R.
, and
Pope
,
M.
,
1983
, “
Strain Measurement in the Medial Collateral Ligament of the Human Knee: An Autopsy Study
,”
J. Biomech.
,
16
(
7
), pp.
491
496
.
30.
Griffith
,
C. J.
,
Wijdicks
,
C. A.
,
LaPrade
,
R. F.
,
Armitage
,
B. M.
,
Johansen
,
S.
, and
Engebretsen
,
L.
,
2009
, “
Force Measurements on the Posterior Oblique Ligament and Superficial Medial Collateral Ligament Proximal and Distal Divisions to Applied Loads
,”
Am. J. Sports Med.
,
37
(
1
), pp.
140
148
.
31.
Mommersteeg
,
T. J.
,
Huiskes
,
R.
,
Blankevoort
,
L.
,
Kooloos
,
J. G.
,
Kauer
,
J. M.
, and
Maathuis
,
P. G.
,
1996
, “
A Global Verification Study of a Quasi-Static Knee Model With Multi-Bundle Ligaments
,”
J. Biomech.
,
29
(
12
), pp.
1659
1664
.
32.
Blankevoort
,
L.
,
Huiskes
,
R.
, and
de Lange
,
A.
,
1991
, “
Recruitment of Knee Joint Ligaments
,”
ASME J. Biomech. Eng.
,
113
(
1
), pp.
94
103
.
33.
Haimes
,
J. L.
,
Wroble
,
R. R.
,
Grood
,
E. S.
, and
Noyes
,
F. R.
,
1994
, “
Role of the Medial Structures in the Intact and Anterior Cruciate Ligament-Deficient Knee. Limits of Motion in the Human Knee
,”
Am. J. Sports Med.
,
22
(
3
), pp.
402
409
.
34.
Robinson
,
J. R.
,
Sanchez-Ballester
,
J.
,
Bull
,
A. M.
,
Thomas Rde
,
W.
, and
Amis
,
A. A.
,
2004
, “
The Posteromedial Corner Revisited. An Anatomical Description of the Passive Restraining Structures of the Medial Aspect of the Human Knee
,”
J. Bone Jt. Surg. Br.
,
86
(
5
), pp.
674
681
.
35.
Bach
,
J. M.
,
Hull
,
M. L.
, and
Patterson
,
H. A.
,
1997
, “
Direct Measurement of Strain in the Posterolateral Bundle of the Anterior Cruciate Ligament
,”
J. Biomech.
,
30
(
3
), pp.
281
283
.
36.
Markolf
,
K. L.
,
Feeley
,
B. T.
,
Tejwani
,
S. G.
,
Martin
,
D. E.
, and
McAllister
,
D. R.
,
2006
, “
Changes in Knee Laxity and Ligament Force After Sectioning the Posteromedial Bundle of the Posterior Cruciate Ligament
,”
Arthroscopy
,
22
(
10
), pp.
1100
1106
.
37.
Ali
,
A. A.
,
Shalhoub
,
S. S.
,
Cyr
,
A. J.
,
Fitzpatrick
,
C. K.
,
Maletsky
,
L. P.
,
Rullkoetter
,
P. J.
, and
Shelburne
,
K. B.
,
2016
, “
Validation of Predicted Patellofemoral Mechanics in a Finite Element Model of the Healthy and Cruciate-Deficient Knee
,”
J. Biomech.
,
49
(
2
), pp.
302
309
.
38.
Weiss
,
J. A.
, and
Gardiner
,
J. C.
,
2001
, “
Computational Modeling of Ligament Mechanics
,”
Crit. Rev. Biomed. Eng.
,
29
(
3
), pp.
303
371
.
39.
Weiss
,
J. A.
,
Gardiner
,
J. C.
,
Ellis
,
B. J.
,
Lujan
,
T. J.
, and
Phatak
,
N. S.
,
2005
, “
Three-Dimensional Finite Element Modeling of Ligaments: Technical Aspects
,”
Med. Eng. Phys.
,
27
(
10
), pp.
845
861
.
You do not currently have access to this content.