Thrombosis and thromboembolization remain large obstacles in the design of cardiovascular devices. In this study, the temporal behavior of thrombus size within a backward-facing step (BFS) model is investigated, as this geometry can mimic the flow separation which has been found to contribute to thrombosis in cardiac devices. Magnetic resonance imaging (MRI) is used to quantify thrombus size and collect topographic data of thrombi formed by circulating bovine blood through a BFS model for times ranging between 10 and 90 min at a constant upstream Reynolds number of 490. Thrombus height, length, exposed surface area, and volume are measured, and asymptotic behavior is observed for each as the blood circulation time is increased. Velocity patterns near, and wall shear stress (WSS) distributions on, the exposed thrombus surfaces are calculated using computational fluid dynamics (CFD). Both the mean and maximum WSS on the exposed thrombus surfaces are much more dependent on thrombus topography than thrombus size, and the best predictors for asymptotic thrombus length and volume are the reattachment length and volume of reversed flow, respectively, from the region of separated flow downstream of the BFS.

References

1.
Lloyd-Jones
,
D.
,
Adams
,
R.
,
Carnethon
,
M.
,
De Simone
,
G.
,
Ferguson
,
T. B.
,
Flegal
,
K.
,
Ford
,
E.
,
Furie
,
K.
,
Go
,
A.
,
Greenlund
,
K.
,
Haase
,
N.
,
Hailpern
,
S.
,
Ho
,
M.
,
Howard
,
V.
,
Kissela
,
B.
,
Kittner
,
S.
,
Lackland
,
D.
,
Lisabeth
,
L.
,
Marelli
,
A.
,
McDermott
,
M.
,
Meigs
,
J.
,
Mozaffarian
,
D.
,
Nichol
,
G.
,
O'Donnell
,
C.
,
Roger
,
V.
,
Rosamond
,
W.
,
Sacco
,
R.
,
Sorlie
,
P.
,
Stafford
,
R.
,
Steinberger
,
J.
,
Thom
,
T.
,
Wasserthiel-Smoller
,
S.
,
Wong
,
N.
,
Wylie-Rosett
,
J.
, and
Hong
,
Y.
,
2009
, “
Heart Disease and Stroke Statistics 2009 Update. A Report From the American Heart Association Statistics Committee and Stroke Statistics Subcommittee
,”
Circulation
,
119
(
3
), pp.
e1
e161
.10.1161/CIRCULATIONAHA.108.843938
2.
Boyle
,
A. J.
,
Russell
,
S. D.
,
Teuteberg
,
J. J.
,
Slaughter
,
M. S.
,
Moazami
,
N.
,
Pagani
,
F. D.
,
Frazier
,
O. H.
,
Heatley
,
G.
,
Farrar
,
D. J.
, and
John
,
R.
,
2009
, “
Low Thromboembolism and Pump Thrombosis With the HeartMate II Left Ventricular Assist Device: Analysis of Outpatient Anti-Coagulation
,”
J. Heart Lung Transpl.
,
28
(
9
), pp.
881
887
.10.1016/j.healun.2009.05.018
3.
Mauri
,
L.
,
Hsieh
,
W.
,
Massaro
,
J. M.
,
Ho
,
K. K. L.
,
D'Agostino
,
R.
, and
Cutlip
,
D. E.
,
2007
, “
Stent Thrombosis in Randomized Clinical Trials of Drug-Eluting Stents
,”
New Engl. J. Med.
,
356
(
10
), pp.
1020
1029
.10.1056/NEJMoa067731
4.
Caceres-Loriga
,
F. M.
,
Perez-Lopez
,
H.
,
Santos-Garcia
,
J.
, and
Morlans-Hernandez
,
K.
,
2006
, “
Prosthetic Heart Valve Thrombosis: Pathogenesis, Diagnosis and Management
,”
Int. J. Cardiol.
,
110
(
1
), pp.
1
6
.10.1016/j.ijcard.2005.06.051
5.
Deutsch
,
S.
,
Tarbell
,
J. M.
,
Manning
,
K. B.
,
Rosenberg
,
G.
, and
Fontaine
,
A. A.
,
2006
, “
Experimental Fluid Mechanics of Pulsatile Artificial Blood Pumps
,”
Annu. Rev. Fluid Mech.
,
38
, pp.
65
86
.10.1146/annurev.fluid.38.050304.092022
6.
Nesbitt
,
W. S.
,
Westein
,
E.
,
Tovar-Lopez
,
F. T.
,
Tolouei
,
E.
,
Mitchell
,
A.
,
Fu
,
J.
,
Carberry
,
J.
,
Fouras
,
A.
, and
Jackson
,
S. P.
,
2009
, “
A Shear Gradient-Dependent Platelet Aggregation Mechanism Drives Thrombus Formation
,”
Nat. Med.
,
15
(
6
), pp.
665
673
.10.1038/nm.1955
7.
Bluestein
,
D.
,
Niu
,
L.
,
Schoephoerster
,
R. T.
, and
Dewanjee
,
M. K.
,
1996
, “
Steady Flow in an Aneurysm Model: Correlation Between Fluid Dynamics and Blood Platelet Deposition
,”
ASME J. Biomech. Eng.
,
118
(
3
), pp.
280
286
.10.1115/1.2796008
8.
Karino
,
T.
, and
Goldsmith
,
H. L.
,
1979
, “
Aggregation of Human Platelets in an Annular Vortex Distal to a Tubular Expansion
,”
Microvasc. Res.
,
17
(
3
), pp.
217
237
.10.1016/S0026-2862(79)80001-1
9.
Karino
,
T.
, and
Goldsmith
,
H. L.
,
1979
, “
Adhesion of Human Platelets to Collagen on the Walls Distal to a Tubular Expansion
,”
Microvasc. Res.
,
17
(
3
), pp.
238
262
.10.1016/S0026-2862(79)80002-3
10.
Gijsen
,
F. J. H.
,
van de Vosse
,
F. N.
, and
Janssen
,
J. D.
,
1998
, “
Wall Shear stress in a Backward-Facing Step Flow of a Red Blood Cell Suspension
,”
Biorheology
,
35
(
4
), pp.
263
279
.10.1016/S0006-355X(99)80010-9
11.
Beaudoin
,
J. F.
,
Cadot
,
O.
,
Aider
,
J. L.
, and
Wesfreid
,
J. E.
,
2004
, “
Three-Dimensional Stationary Flow Over a Backward-Facing Step
,”
Eur. J. Mech. B
,
23
(
1
), pp.
147
155
.10.1016/j.euromechflu.2003.09.010
12.
Williams
,
P. T.
, and
Baker
,
A. J.
,
1997
, “
Numerical Simulations of Laminar Flow Over a 3D Backward-Facing Step
,”
Int. J. Numer. Methods Fluids
,
24
(
11
), pp.
1159
1183
.10.1002/(SICI)1097-0363(19970615)24:11<1159::AID-FLD534>3.0.CO;2-R
13.
Armaly
,
B. F.
,
Durst
,
F.
,
Pereira
,
J. C. F.
, and
Schönung
,
B.
,
1983
, “
Experimental and Theoretical Investigation of Backward-Facing Step Flow
,”
J. Fluid. Mech.
,
127
, pp.
473
496
.10.1017/S0022112083002839
14.
Tamagawa
,
M.
, and
Matsuo
,
S.
,
2004
, “
Predictions of Thrombus Formation Using Lattice Boltzmann Method (Modeling of Adhesion Force for Particles to Wall)
,”
JSME Int. J.
,
47
(
4
), pp.
1027
1034
.10.1299/jsmec.47.1027
15.
Tamagawa
,
M.
,
Kaneda
,
H.
,
Hiramoto
,
M.
, and
Nagahama
,
S.
,
2009
, “
Simulation of Thrombus Formation in Shear Flows Using Lattice Boltzmann Method
,”
Artif. Organs
,
33
(
8
), pp.
604
610
.10.1111/j.1525-1594.2009.00782.x
16.
Cooper
,
B. T.
,
Long
,
G. D.
,
Knight
,
L. C.
, and
Manning
,
K. B.
,
2009
, “A Novel Approach to the Correlation of Fluid Dynamics and Thromboembolism Associated With Cardiovascular Prosthetic Devices,”
O.
Dossel
, and
W. C.
Schlegel
, eds., “
World Congress on Medical Physics and Biomedical Engineering
,”
IFMBE Proceedings, Vol. 25/4
, Springer, Berlin, Heidelberg, pp.
1396
1399
.
17.
Long
,
G. D.
,
2009
, “
Computational Simulations of Flow Over the Surface of a Formed Thrombus in a Backward-Facing Step
,”
M.S.
thesis, The Pennsylvania State University, University Park, PA.
18.
Bluestein
,
D.
,
Niu
,
L.
,
Schoephoerster
,
R. T.
, and
Dewanjee
,
M. K.
,
1997
, “
Fluid Mechanics of Arterial Stenosis: Relationship to the Development of Mural Thrombus
,”
Ann. Biomed. Eng.
,
25
(
2
), pp.
344
356
.10.1007/BF02648048
19.
Zhao
,
R.
,
Marhefka
,
J. N.
,
Shu
,
F.
,
Hund
,
S. J.
,
Kameneva
,
M. V.
, and
Antaki
,
J. F.
,
2008
, “
Micro-Flow Visualization of Red Blood Cell-Enhanced Platelet Concentration at Sudden Expansion
,”
Ann. Biomed. Eng.
,
36
(
7
), pp.
1130
1141
.10.1007/s10439-008-9494-z
20.
Robaina
,
S.
,
Jayachandran
,
B.
,
He
,
Y.
,
Frank
,
A.
,
Moreno
,
M. R.
,
Schoephoerster
,
R. T.
, and
Moore
,
J. E.
, Jr.
,
2003
, “
Platelet Adhesion to Simulated Stented Surfaces
,”
J. Endovasc. Ther.
,
10
(
5
), pp.
978
986
.10.1583/1545-1550(2003)010<0978:PATSSS>2.0.CO;2
21.
Sukavaneshvar
,
S.
, and
Solen
,
K. A.
,
1998
, “
Effects of Hemodynamics on Thromboembolism in Coronary Stents and Prototype Flow Cells in vitro
,”
ASAIO J.
,
44
(
5
), pp.
M388
M392
.10.1097/00002480-199809000-00012
22.
Goodman
,
P. D.
,
Hall
,
M. W.
,
Sukavaneshvar
,
S.
, and
Solen
,
K. A.
,
2000
, “
in vitro Model for Studying the Effects of Hemodynamics on Device Induced Thromboembolism in Human Blood
,”
ASAIO J.
,
46
(
5
), pp.
576
578
.10.1097/00002480-200009000-00013
23.
Goodman
,
P. D.
,
Barlow
,
E. T.
,
Crapo
,
P. M.
,
Mohammad
,
S. F.
, and
Solen
,
K. A.
,
2005
, “
Computational Model of Device-Induced Thrombosis and Thromboembolism
,”
Ann. Biomed. Eng.
,
33
(
6
), pp.
780
797
.10.1007/s10439-005-2951-z
24.
Kuharsky
,
A. L.
, and
Fogelson
,
A. L.
,
2001
, “
Surface-Mediated Control of Blood Coagulation: The Role of Binding Site Densities and Platelet Deposition
,”
Biophys. J.
,
80
(
3
), pp.
1050
1074
.10.1016/S0006-3495(01)76085-7
25.
Fogelson
,
A. L.
, and
Tania
,
N.
,
2005
, “
Coagulation Under Flow: The Influence of Flow-Mediated Transport on the Initiation and Inhibition of Coagulation
,”
Pathophysiol. Haemost. Thromb.
,
34
(
2–3
), pp.
91
108
.10.1159/000089930
26.
Tokarev
,
A.
,
Sirakov
,
I.
,
Panasenko
,
G.
,
Volpert
,
V.
,
Shnol
,
E.
,
Butylin
,
A.
, and
Ataullakhanov
,
F.
,
2012
, “
Continuous Mathematical Model of Platelet Thrombus Formation in Blood Flow
,”
Russ. J. Numer. Anal. Math. Model.
,
27
(
2
), pp.
191
212
.10.1515/rnam-2012-0011
27.
Wang
,
W.
, and
King
,
M. R.
,
2012
, “
Multiscale Modeling of Platelet Adhesion and Thrombus Growth
,”
Ann. Biomed. Eng.
,
40
(
11
), pp.
2345
2354
.10.1007/s10439-012-0558-8
28.
Xu
,
Z.
,
Kamocka
,
M.
,
Alber
,
M.
, and
Rosen
,
E. D.
,
2011
, “
Computational Approaches to Studying Thrombus Development
,”
Arterioscler. Thromb. Vasc. Biol.
,
31
(
3
), pp.
500
505
.10.1161/ATVBAHA.110.213397
29.
Leiderman
,
K.
, and
Fogelson
,
A. L.
,
2011
, “
Grow With the Flow: A Spatial-Temporal Model of Platelet Deposition and Blood Coagulation Under Flow
,”
Math. Med. Biol.
,
28
(
1
), pp.
47
84
.10.1093/imammb/dqq005
30.
Cook
,
S.
,
Ladich
,
E.
,
Nakazawa
,
G.
,
Eshtehardi
,
P.
,
Neidhard
,
M.
,
Vogel
,
R.
,
Togni
,
M.
,
Wenaweser
,
P.
,
Billinger
,
M.
,
Seiler
,
C.
,
Gay
,
S.
,
Meier
,
B.
,
Pichler
,
W. J.
,
Juni
,
P.
,
Virmani
,
R.
, and
Windecker
,
S.
,
2009
, “
Correlation of Intravascular Ultrasound Findings With Histopathological Analysis of Thrombus Aspirates in Patients With Very Late Drug-Eluting Stent Thrombosis
,”
Circulation
,
120
(
5
), pp.
391
399
.10.1161/CIRCULATIONAHA.109.854398
31.
Overoye-Chan
,
K.
,
Koerner
,
S.
,
Looby
,
R. J.
,
Kolodziej
,
A. F.
,
Zech
,
S. G.
,
Deng
,
Q.
,
Chasse
,
J. M.
,
McMurry
,
T. J.
, and
Caravan
,
P.
,
2008
, “
EP-2104R: A Fibrin-Specific Gadolinium-Based MRI Contrast Agent for Detection of Thrombus
,”
J. Am. Chem. Soc.
,
130
(
18
), pp.
6025
6039
.10.1021/ja800834y
32.
Miserus
,
R. J. H. M.
,
Herias
,
M. V.
,
Prinzen
,
L.
,
Lobbes
,
M. B. I.
,
Suylen
,
R. V.
,
Dirksen
,
A.
,
Hackeng
,
T. M.
,
Heemskerk
,
J. W. M.
,
van Engelshoven
,
J. M. A.
,
Daemen
,
M. J. A. P.
,
van Zandvoort
,
M. A. M. J.
,
Heeneman
,
S.
, and
Kooi
,
M. E.
,
2009
, “
Molecular MRI of Early Thrombus Formation Using Bimodal α2-Antiplasmin-Based Contrast Agent
,”
JACC Cardiovasc. Imaging
,
2
(
8
), pp.
987
996
.10.1016/j.jcmg.2009.03.015
33.
Wang
,
X.
,
Jin
,
P.
,
Zhou
,
T.
,
Zhao
,
T.
,
Ding
,
Q.
,
Wang
,
D.
,
Zhao
,
G.
,
Jing-Dai
,
W. H.
, and
Ge
,
H.
,
2010
, “
MR Molecular Imaging of Thrombus: Development and Application of a Gd-Based Novel Contrast Agent Targeting p-Selectin
,”
Clin. Appl. Thromb./Hemostasis
,
16
(
2
), pp.
177
183
.10.1177/1076029608330470
34.
Von zur Muhlen
,
C.
,
von Elverfeldt
,
D.
,
Moeller
,
J. A.
,
Choudhury
,
R. P.
,
Paul
,
D.
,
Hagemeyer
,
C. E.
,
Olschewski
,
M.
,
Becker
,
A.
,
Neudorfer
,
I.
,
Bassler
,
N.
,
Schwarz
,
M.
,
Bode
,
C.
, and
Peter
,
K.
,
2008
, “
Magnetic Resonance Imaging Contrast Agent Targeted Toward Activated Platelets Allows in vivo Detection of Thrombosis and Monitoring of Thrombolysis
,”
Circulation
,
118
(
3
), pp.
258
267
.10.1161/CIRCULATIONAHA.107.753657
35.
Nair
,
S. A.
,
Kolodziej
,
A. F.
,
Bhole
,
G.
,
Greenfield
,
M. T.
,
McMurry
,
T. J.
, and
Caravan
,
P.
,
2008
, “
Monovalent and Bivalent Fibrin-Specific MRI Contrast Agents for Detection of Thrombus
,”
Angew. Chem
., Int. Ed.,
47
(
26
), pp.
4918
4921
.10.1002/anie.200800563
36.
Lassila
,
R.
,
Badimon
,
J. J.
,
Vallabhajosula
,
S.
, and
Badimon
,
L.
,
1990
, “
Dynamic Monitoring of Platelet Deposition on Severely Damaged Vessel Wall in Flowing Blood. Effects of Different Stenoses on Thrombus Growth
,”
Arterioscler. Thromb. Vasc. Biol.
,
10
(
2
), pp.
306
315
.10.1161/01.ATV.10.2.306
37.
Riedel
,
C. H.
,
Jensen
,
U.
,
Rohr
,
A.
,
Tietke
,
M.
,
Alfke
,
K.
,
Ulmer
,
S.
, and
Jansen
,
O.
,
2010
, “
Assessment of Thrombus in Acute Middle Cerebral Artery Occlusions Using Thin-Slice Nonenhanced Computed Tomography Reconstructions
,”
Stroke
,
41
(
8
), pp.
1659
1664
.10.1161/STROKEAHA.110.580662
38.
Wang
,
E. H. J.
,
Makaroun
,
M. S.
,
Webster
,
M. W.
, and
Vorp
,
D. A.
,
2002
, “
Effect of Intraluminal Thrombus on Wall Stress in Patient-Specific Models of Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
,
36
(
3
), pp.
598
604
.10.1067/mva.2002.126087
39.
Maiora
,
J.
,
Garcia
,
G.
,
Macia
,
I.
,
Legarreta
,
J. H.
,
Boto
,
F.
,
Paloc
,
C.
,
Grana
,
M.
, and
Abuin
,
J. S.
,
2010
, “
Thrombus Volume Change Visualization After Endovascular Abdominal Aortic Aneurysm Repair
,”
Hybrid Artificial Intelligence Systems
,
M. G.
Romay
,
E.
Corchado
, and
M. G.
Sebastian
, eds.,
Springer-Verlag
,
Berlin, Heidelberg
, pp.
524
531
.
40.
Mu
,
J.
,
Liu
,
X.
,
Kamocka
,
M. M.
,
Xu
,
Z.
,
Abler
,
M. S.
,
Rosen
,
E. D.
, and
Chen
,
D. Z.
,
2010
, “
Segmentation, Reconstruction, and Analysis of Blood Thrombus Formation in 3D 2-Photon Microscopy Images
,”
EURASIP J. Adv. Signal Process.
,
25
(
3
), pp.
1
8
.10.1155/2010/147216
41.
Tolouei
,
E.
,
Butler
,
C. J.
,
Fouras
,
A.
,
Ryan
,
K.
,
Sheard
,
G. J.
, and
Carberry
,
J.
,
2011
, “
Effect of Hemodynamic Forces on Platelet Aggregation Geometry
,”
Ann. Biomed. Eng.
,
39
(
5
), pp.
1403
1413
.10.1007/s10439-010-0239-4
42.
Windberger
,
U.
,
Bartholovitsch
,
A.
,
Plasenzotti
,
R.
,
Korak
,
K. J.
, and
Heinze
,
G.
,
2003
, “
Whole Blood Viscosity, Plasma Viscosity and Erythrocyte Aggregation in Nine Mammalian Species: Reference Values and Comparison of Data
,”
Exp. Physiol.
,
88
(
3
), pp.
431
440
.10.1113/eph8802496
43.
Gottschall
,
J. L.
,
Rzad
,
L.
, and
Aster
,
R. H.
,
1986
, “
Studies of the Minimum Temperature at Which Human Platelets can be Stored With Full Maintenance of Viability
,”
Transfusion
,
26
(
5
), pp.
460
462
.10.1046/j.1537-2995.1986.26587020126.x
44.
Holme
,
S.
, and
Heaton
,
A.
,
1995
, “
in vitro Platelet Ageing at 22 °C is Reduced Compared to in vivo Ageing at 37 °C
,”
Br. J. Haematol.
,
91
(
1
), pp.
212
218
.10.1111/j.1365-2141.1995.tb05272.x
45.
OpenFOAM, “
OpenFOAM User Guide
.” Available at: http://www.openfoam.org/docs/user/index.php
46.
Guj
,
G.
, and
Stella
,
F.
,
1988
, “
Numerical Solutions of High-Re Recirculating Flows in Vorticity-Velocity Form
,”
Int. J. Numer. Methods Fluids
,
8
(
4
), pp.
405
416
.10.1002/fld.1650080404
47.
Sohn
,
J. L.
,
1988
, “
Evaluation of FIDAP on Some Classical Laminar and Turbulent Benchmarks
,”
Int. J. Numer. Methods Fluids
,
8
(
12
), pp.
1469
1490
.10.1002/fld.1650081202
48.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluid Eng.
,
116
, pp.
405
413
.10.1115/1.2910291
49.
Craven
,
B. A.
,
Paterson
,
E. G.
,
Settles
,
G. S.
, and
Lawson
,
M. J.
,
2009
, “
Development and Verification of a High-Fidelity Computational Fluid Dynamics Model of Canine Nasal Airflow
,”
ASME J. Biomech. Eng.
,
131
,
p
. 091002.10.1115/1.3148202
50.
Ihlenfeld
,
J. V.
,
Mathis
,
T. R.
,
Riddle
,
L. M.
, and
Cooper
,
S. L.
,
1979
, “
Measurement of Transient Thrombus Deposition on Polymeric Materials
,”
Thromb. Res.
,
14
(
6
), pp.
953
967
.10.1016/0049-3848(79)90013-6
51.
Lelah
,
M. D.
,
Lambrecht
,
L. K.
, and
Cooper
,
S. L.
,
1984
, “
A Canine Ex Vivo Series Shunt for Evaluating Thrombus Deposition on Polymer Surfaces
,”
J. Biomed. Mater. Res.
,
18
(
5
), pp.
475
496
.10.1002/jbm.820180503
52.
Chou
,
J.
,
Mackman
,
N.
,
Merrill-Skoloff
,
G.
,
Pedersen
,
B.
,
Furie
,
B. C.
, and
Furie
,
B.
,
2004
, “
Hematopoietic Cell-Derived Microparticle Tissue Factor Contributes to Fibrin Formation During Thrombus Propagation
,”
Blood
,
104
(
10
), pp.
3190
3197
.10.1182/blood-2004-03-0935
53.
Dubois
,
C.
,
Panicot-Dubois
,
L.
,
Gainor
,
J. F.
,
Furie
,
B. C.
, and
Furie
,
B.
,
2007
, “
Thrombin-Initiated Platelet Activation in vivo is VWF Independent
,”
J. Clin. Invest.
,
117
(
4
), pp.
953
960
.10.1172/JCI30537
54.
Ku
,
D. N.
,
1997
, “
Blood Flow in Arteries
,”
Annu. Rev. Fluid Mech.
,
29
(
1
), pp.
399
434
.10.1146/annurev.fluid.29.1.399
55.
Mills
,
C. J.
,
Gabe
,
I. T.
,
Gault
,
J. H.
,
Mason
,
D. T.
,
Ross
,
J.
, Jr.
,
Braunwald
,
E.
, and
Shillingford
,
J. P.
,
1970
, “
Pressure-Flow Relationships and Vascular Impedance in Man
,”
Cardiovasc. Res.
,
4
(
4
), pp.
405
417
.10.1093/cvr/4.4.405
56.
Basmadjian
,
D.
,
1984
, “
The Hemodynamic Forces Acting on Thrombi, From Incipient Attachment of Single Cells to Maturity and Embolization
,”
J. Biomech.
,
17
(
4
), pp.
287
298
.10.1016/0021-9290(84)90139-8
57.
Furie
,
B.
, and
Furie
,
B. C.
,
2008
, “
Mechanisms of Thrombus Formation
,”
New Engl. J. Med.
,
359
(
9
), pp.
938
949
.10.1056/NEJMra0801082
58.
Zhang
,
J.
,
Gellman
,
B.
,
Koert
,
A.
,
Dasse
,
K. A.
,
Gilbert
,
R. J.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2006
, “
Computational and Experimental Evaluation of the Fluid Dynamics and Hemocompatibility of the CentriMag Blood Pump
,”
Artif. Organs
,
30
(
3
), pp.
168
177
.10.1111/j.1525-1594.2006.00203.x
59.
Snyder
,
T. A.
,
Watach
,
M. J.
,
Litwak
,
K. N.
, and
Wagner
,
W. R.
,
2002
, “
Platelet Activation, Aggregation, and Life Span in Calves Implanted With Axial Flow Ventricular Assist Devices
,”
Ann. Thorac. Surg.
,
73
(
6
), pp.
1933
1938
.10.1016/S0003-4975(02)03549-X
60.
Bonchek
,
L. I.
, and
Braunwald
,
N. S.
,
1967
, “
Modification of Thrombus Formation on Prosthetic Heart Valves by the Administration of Low Molecular Weight Dextran
,”
Ann. Surg.
,
165
(
2
), pp.
200
205
.10.1097/00000658-196702000-00006
61.
Soloviev
,
M. V.
,
Okazaki
,
Y.
, and
Harasaki
,
H.
,
1999
, “
Whole Blood Platelet Aggregation in Humans and Animals: A Comparative Study
,”
J. Surg. Res.
,
82
(
2
), pp.
180
187
.10.1006/jsre.1998.5543
62.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
,
1985
, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation Between Plaque Location and Low Oscillating Shear Stress
,”
Arterioscler. Thromb. Vasc.
,
5
(
3
), pp.
293
302
.10.1161/01.ATV.5.3.293
You do not currently have access to this content.