Shear stress plays a pivotal role in pathogenesis of coronary heart disease. The spatial and temporal variation in hemodynamics of blood flow, especially shear stress, is dominated by the vessel geometry. The goal of the present study was to investigate the effect of 2D and 3D geometries on the numerical modeling of coronary blood flow and shear stress distribution. We developed physiologically realistic 2D and 3D models (with similar geometries) of the human left coronary artery under normal and stenosis conditions (30%, 60%, and 80%) using PROE (WF 3). Transient blood flows in these models were solved using laminar and turbulent (k-ω) models using a computational fluid dynamics solver, FLUENT (v6.3.26). As the stenosis severity increased, both models predicted a similar pattern of increased shear stress at the stenosis throat, and in recirculation zones formed downstream of the stenosis. The 2D model estimated a peak shear stress value of 0.91, 2.58, 5.21, and 10.09 Pa at the throat location under normal, 30%, 60%, and 80% stenosis severity. The peak shear stress values at the same location estimated by the 3D model were 1.41, 2.56, 3.15, and 13.31 Pa, respectively. The 2D model underestimated the shear stress distribution inside the recirculation zone compared with that of 3D model. The shear stress estimation between the models diverged as the stenosis severity increased. Hence, the 2D model could be sufficient for analyzing coronary blood flow under normal conditions, but under disease conditions (especially 80% stenosis) the 3D model was more suitable.

1.
Lloyd-Jones
,
D.
,
Adams
,
R.
,
Carnethon
,
M.
,
De
,
S. G.
,
Ferguson
,
T. B.
,
Flegal
,
K.
,
Ford
,
E.
,
Furie
,
K.
,
Go
,
A.
,
Greenlund
,
K.
,
Haase
,
N.
,
Hailpern
,
S.
,
Ho
,
M.
,
Howard
,
V.
,
Kissela
,
B.
,
Kittner
,
S.
,
Lackland
,
D.
,
Lisabeth
,
L.
,
Marelli
,
A.
,
McDermott
,
M.
,
Meigs
,
J.
,
Mozaffarian
,
D.
,
Nichol
,
G.
,
O’Donnell
,
C.
,
Roger
,
V.
,
Rosamond
,
W.
,
Sacco
,
R.
,
Sorlie
,
P.
,
Stafford
,
R.
,
Steinberger
,
J.
,
Thom
,
T.
,
Wasserthiel-Smoller
,
S.
,
Wong
,
N.
,
Wylie-Rosett
,
J.
, and
Hong
,
Y.
, 2009, “
Heart Disease and Stroke Statistics—2009 Update: A Report From the American Heart Association Statistics Committee and Stroke Statistics Subcommittee
,”
Circulation
0009-7322,
119
(
3
), pp.
e21
e181
.
2.
Cunningham
,
K. S.
, and
Gotlieb
,
A. I.
, 2005, “
The Role of Shear Stress in the Pathogenesis of Atherosclerosis
,”
Lab. Invest.
0023-6837,
85
(
1
), pp.
9
23
.
3.
Ding
,
Z.
,
Biggs
,
T.
,
Seed
,
W. A.
, and
Friedman
,
M. H.
, 1997, “
Influence of the Geometry of the Left Main Coronary Artery Bifurcation on the Distribution of Sudanophilia in the Daughter Vessels
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
17
(
7
), pp.
1356
1360
.
4.
DePaola
,
N.
,
Gimbrone
,
M. A.
, Jr.
,
Davies
,
P. F.
, and
Dewey
,
C. F.
, Jr.
, 1992, “
Vascular Endothelium Responds to Fluid Shear Stress Gradients
,”
Arterioscler. Thromb.
1049-8834,
12
(
11
), pp.
1254
1257
.
5.
Nagel
,
T.
,
Resnick
,
N.
,
Dewey
,
C. F.
, Jr.
, and
Gimbrone
,
M. A.
, Jr.
, 1999, “
Vascular Endothelial Cells Respond to Spatial Gradients in Fluid Shear Stress by Enhanced Activation of Transcription Factors
,”
Arterioscler. Thromb. Vasc. Biol.
,
19
(
8
), pp.
1825
1834
.
6.
Kalbfleisch
,
H.
, and
Hort
,
W.
, 1977, “
Quantitative Study on the Size of Coronary Artery Supplying Areas Postmortem
,”
Am. Heart J.
0002-8703,
94
(
2
), pp.
183
188
.
7.
Frangos
,
S. G.
,
Gahtan
,
V.
, and
Sumpio
,
B.
, 1999, “
Localization of Atherosclerosis: Role of Hemodynamics
,”
Arch. Surg. (Chicago)
0004-0010,
134
(
10
), pp.
1142
1149
.
8.
Varghese
,
S. S.
, and
Frankel
,
S. H.
, 2003, “
Numerical Modeling of Pulsatile Turbulent Flow in Stenotic Vessels
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
4
), pp.
445
460
.
9.
Chien
,
S.
, 2006, “
Mechanotransduction and Endothelial Cell Homeostasis: The Wisdom of the Cell
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
292
(
3
), pp.
H1209
H1224
.
10.
Chien
,
S.
, 2008, “
Effects of Disturbed Flow on Endothelial Cells
,”
Ann. Biomed. Eng.
0090-6964,
36
(
4
), pp.
554
562
.
11.
He
,
X.
, and
Ku
,
D. N.
, 1996, “
Pulsatile Flow in the Human Left Coronary Artery Bifurcation: Average Conditions
,”
ASME J. Biomech. Eng.
0148-0731,
118
(
1
), pp.
74
82
.
12.
Nosovitsky
,
V. A.
,
Ilegbusi
,
O. J.
,
Jiang
,
J.
,
Stone
,
P. H.
, and
Feldman
,
C. L.
, 1997, “
Effects of Curvature and Stenosis-Like Narrowing on Wall Shear Stress in a Coronary Artery Model With Phasic Flow
,”
Comput. Biomed. Res.
0010-4809,
30
(
1
), pp.
61
82
.
13.
Smith
,
S.
,
Austin
,
S.
,
Wesson
,
G. D.
, and
Moore
,
C. A.
, 2006, “
Calculation of Wall Shear Stress in Left Coronary Artery Bifurcation for Pulsatile Flow Using Two-Dimensional Computational Fluid Dynamics
,” Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society,
IEEE
, 1, pp.
871
874
.
14.
Strony
,
J.
,
Beaudoin
,
A.
,
Brands
,
D.
, and
Adelman
,
B.
, 1993, “
Analysis of Shear Stress and Hemodynamic Factors in a Model of Coronary Artery Stenosis and Thrombosis
,”
Am. J. Physiol.
0002-9513,
265
(
5
, Pt. 2), pp.
H1787
H1796
.
15.
Li
,
M. X.
,
Beech-Brandt
,
J. J.
,
John
,
L. R.
,
Hoskins
,
P. R.
, and
Easson
,
W. J.
, 2007, “
Numerical Analysis of Pulsatile Blood Flow and Vessel Wall Mechanics in Different Degrees of Stenosis
,”
J. Biomech.
0021-9290,
40
(
16
), pp.
3715
3724
.
16.
Dodge
,
J. T.
, Jr.
,
Brown
,
B. G.
,
Bolson
,
E. L.
, and
Dodge
,
H. T.
, 1988, “
Intrathoracic Spatial Location of Specified Coronary Segments on the Normal Human Heart. Applications in Quantitative Arteriography, Assessment of Regional Risk and Contraction, and Anatomic Display
,”
Circulation
0009-7322,
78
(
5
, Pt. 1), pp.
1167
1180
.
17.
Dodge
,
J. T.
, Jr.
,
Brown
,
B. G.
,
Bolson
,
E. L.
, and
Dodge
,
H. T.
, 1992, “
Lumen Diameter of Normal Human Coronary Arteries. Influence of Age, Sex, Anatomic Variation, and Left Ventricular Hypertrophy or Dilation
,”
Circulation
0009-7322,
86
(
1
), pp.
232
246
.
18.
Khalifa
,
A. M.
, and
Giddens
,
D. P.
, 1981, “
Characterization and Evolution Poststenotic Flow Disturbances
,”
J. Biomech.
0021-9290,
14
(
5
), pp.
279
296
.
19.
Ghalichi
,
F.
,
Deng
,
X.
,
De
,
C. A.
,
Douville
,
Y.
,
King
,
M.
, and
Guidoin
,
R.
, 1998, “
Low Reynolds Number Turbulence Modeling of Blood Flow in Arterial Stenoses
,”
Biorheology
0006-355X,
35
(
4–5
), pp.
281
294
.
20.
Chandran
,
K. B.
,
Yoganathan
,
A. P.
, and
Rittgers
,
S. E.
, 2007,
Biofluid Mechanics: The Human Circulation
,
Taylor & Francis
,
Boca Raton
, Chap. 3.
21.
Fung
,
Y. C.
, 1996,
Biomechanics: Circulation
,
Springer
,
New York
.
22.
Perktold
,
K.
,
Hofer
,
M.
,
Rappitsch
,
G.
,
Loew
,
M.
,
Kuban
,
B. D.
, and
Friedman
,
M. H.
, 1997, “
Validated Computation of Physiologic Flow in a Realistic Coronary Artery Branch
,”
J. Biomech.
0021-9290,
31
(
3
), pp.
217
228
.
23.
Yao
,
H.
,
Ang
,
K. C.
,
Yeo
,
J. H.
, and
Sim
,
E. K.
, 2000, “
Computational Modelling of Blood Flow Through Curved Stenosed Arteries
,”
J. Med. Eng. Technol.
0309-1902,
24
(
4
), pp.
163
168
.
24.
Fry
,
D. L.
, 1968, “
Acute Vascular Endothelial Changes Associated With Increased Blood Velocity Gradients
,”
Circ. Res.
0009-7330,
22
(
2
), pp.
165
197
.
25.
Ramstack
,
J. M.
,
Zuckerman
,
L.
, and
Mockros
,
L. F.
, 1979, “
Shear-Induced Activation of Platelets
,”
J. Biomech.
0021-9290,
12
(
2
), pp.
113
125
.
26.
Santamarina
,
A.
,
Weydahl
,
E.
,
Siegel
,
J. M.
, Jr.
, and
Moore
,
J. E.
, Jr.
, 1998, “
Computational Analysis of Flow in a Curved Tube Model of the Coronary Arteries: Effects of Time-Varying Curvature
,”
Ann. Biomed. Eng.
0090-6964,
26
(
6
), pp.
944
954
.
You do not currently have access to this content.