High-resolution numerical simulations are carried out to systematically investigate the effect of the incoming flow waveform on the hemodynamics and wall shear stress patterns of an anatomic sidewall intracranial aneurysm model. Various wave forms are constructed by appropriately scaling a typical human waveform such that the waveform maximum and time-averaged Reynolds numbers, the Womersley number (α), and the pulsatility index (PI) are systematically varied within the human physiologic range. We show that the waveform PI is the key parameter that governs the vortex dynamics across the aneurysm neck and the flow patterns within the dome. At low PI, the flow in the dome is similar to a driven cavity flow and is characterized by a quasi-stationary shear layer that delineates the parent artery flow from the recirculating flow within the dome. At high PI, on the other hand, the flow is dominated by vortex ring formation, transport across the neck, and impingement and breakdown at the distal wall of the aneurysm dome. We further show that the spatial and temporal characteristics of the wall shear stress field on the aneurysm dome are strongly correlated with the vortex dynamics across the neck. We finally argue that the ratio between the characteristic time scale of transport by the mean flow across the neck and the time scale of vortex ring formation can be used to predict for a given sidewall aneurysm model the critical value of the waveform PI for which the hemodynamics will transition from the cavity mode to the vortex ring mode.

1.
Juvela
,
S.
,
Porras
,
M.
, and
Poussa
,
K.
, 2000, “
Natural History of Unruptured Intracranial Aneurysms: Probability of and Risk factors for Aneurysm Rupture
,”
J. Neurosurg.
0022-3085,
93
(
3
), pp.
379
387
.
2.
Lasheras
,
J.
, 2007, “
The Biomechanics of Arterial Aneurysms
,”
Annu. Rev. Fluid Mech.
0066-4189,
39
(
1
), pp.
293
319
.
3.
Chatzizisis
,
Y.
,
Coskun
,
A.
,
Jonas
,
M.
,
Edelman
,
E. R.
,
Feldman
,
C. L.
, and
Stone
,
P. H.
, 2007, “
Role of Endothelial Shear Stress in the Natural History of Coronary Atherosclerosis and Vascular Remodeling: Molecular, Cellular, and Vascular Behavior
,”
J. Am. Coll. Cardiol.
0735-1097,
49
(
25
), pp.
2379
2393
.
4.
Bao
,
X.
,
Lu
,
C.
, and
Frangos
,
J.
, 1999, “
Temporal Gradients in Shear but Not Steady Shear Stresses Induces pdgf-a and mcp-1 Expressions in Enthelial Cells
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
19
, pp.
996
1003
.
5.
Lieber
,
B. B.
,
Livescu
,
V.
,
Hopkins
,
L. N.
, and
Wakhloo
,
A. K.
, 2002, “
Particle Image Velocimetry Assessment of Stent Design Influence on Intra-Aneurysmal Flow
,”
Ann. Biomed. Eng.
0090-6964,
30
, pp.
768
777
.
6.
Cantón
,
G.
,
Levy
,
D. I.
,
Lasheras
,
J. C.
, and
Nelson
,
P. K.
, 2005, “
Flow Changes Caused by the Sequential Placement of Stents Across the Neck of Sidewall Cerebral Aneurysms
,”
J. Neurosurg.
0022-3085,
103
, pp.
891
902
.
7.
Seong
,
J.
,
Wakhloo
,
A. K.
, and
Lieber
,
B.
, 2007, “
In Vitro Evaluation of Flow Divertors in an Elastase-Induced Saccular Aneurysm Model in Rabbit
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
6
), pp.
863
872
.
8.
Steinman
,
D.
,
Milner
,
J.
,
Norley
,
C.
,
Lownie
,
S.
, and
Holdsworth
,
D.
, 2003, “
Image-Based Computational Simulation of Flow Dynamics in a Giant Intracranial Aneurysm
,”
AJNR Am. J. Neuroradiol.
0195-6108,
24
, pp.
559
566
.
9.
Cebral
,
J. R.
,
Castro
,
M. A.
,
Appanaboyina
,
S.
,
Putman
,
C. M.
,
Millan
,
D.
, and
Frangi
,
A. F.
, 2005, “
Efficient Pipeline for Image-Based Patient-Specific Analysis of Cerebral Aneurysm Hemodynamics: Technique and Sensitivity
,”
IEEE Trans. Med. Imaging
0278-0062,
24
(
4
), pp.
457
467
.
10.
Ford
,
M. D.
,
Nikolov
,
H. N.
,
Milner
,
J. S.
,
Lownie
,
S. P.
,
DeMont
,
E. M.
,
Kalata
,
W.
,
Loth
,
F.
,
Holdsworth
,
D. W.
, and
Steinman
,
D. A.
, 2008, “
PIV-Measured Versus CFD-Predicted Flow Dynamics in Anatomically Realistic Cerebral Aneurysm Models
,”
ASME J. Biomech. Eng.
0148-0731,
130
(
2
), p.
021015
.
11.
Jiang
,
J.
, and
Strother
,
C.
, 2009, “
Computational Fluid Dynamics Simulations of Intracranial Aneurysms at Varying Heart Rates: A “Patient-Specific” Study
,”
ASME J. Biomech. Eng.
0148-0731,
131
(
9
), p.
091001
.
12.
Aaslid
,
R.
,
Huber
,
P.
, and
Nornes
,
H.
, 1984, “
Evaluation of Cerebrovascular Spasm With Transcranial Doppler Ultrasound
,”
J. Neurosurg.
0022-3085,
60
(
1
), pp.
37
41
.
13.
Holdsworth
,
D.
,
Norley
,
C.
,
Frayne
,
R.
,
Steinman
,
D.
, and
Rutt
,
B.
, 1999, “
Characterization of Common Carotid Artery Blood-Flow Waveforms in Normal Human Subjects
,”
Physiol. Meas.
,
20
(
3
), pp.
219
240
.
14.
Scheel
,
P.
,
Ruge
,
C.
, and
Schning
,
M.
, 2000, “
Flow Velocity and Flow Volume Measurements in the Extracranial Carotid and Vertebral Arteries in Healthy Adults: Reference Data and the Effects of Age
,”
Ultrasound Med. Biol.
0301-5629,
26
(
8
), pp.
1261
1266
.
15.
Lindegaard
,
K. -F.
,
Bakke
,
S. J.
,
Grolimund
,
P.
,
Aaslid
,
R.
,
Huber
,
P.
, and
Nornes
,
H.
, 1985, “
Assessment of Intracranial Hemodynamics in Carotid Artery Disease by Transcranial Doppler Ultrasound
,”
J. Neurosurg.
0022-3085,
63
(
6
), pp.
890
898
.
16.
Gobin
,
Y. P.
,
Counord
,
P.
, and
Duffaux
,
J.
, 1994, “
In Vitro Study of Haemodynamics in a Giant Saccular Aneurysm Model: Influence of Flow Dynamics in the Parent Vessel and Effects of Coil Embolisation
,”
Neuroradiology
0028-3940,
36
(
7
), pp.
530
536
.
17.
Yu
,
S.
, and
Zhao
,
J.
, 2000, “
A Particle Image Velocimetry Study on the Pulsatile Flow Characteristics in Straight Tubes With an Asymmetric Bulge
,”
Proceedings of the Institution of Mechanical Engineers Part C
,
214
(
5
), pp.
655
671
. 0002-7820
18.
Cebral
,
J.
,
Castro
,
M.
,
Burgess
,
J.
,
Pergolizzi
,
R.
,
Sheridan
,
M.
, and
Putman
,
C.
, 2005, “
Characterization of Cerebral Aneurysms for Assessing Risk of Rupture by Using Patient-Specific Computational Hemodynamics Models
,”
AJNR Am. J. Neuroradiol.
0195-6108,
26
, pp.
2550
2559
.
19.
Jou
,
L. -D.
,
Wong
,
G.
,
Dispensa
,
B.
,
Lawton
,
M.
,
Higashida
,
R.
,
Young
,
W.
, and
Saloner
,
D.
, 2005, “
Correlation Between Lumenal Geometry Changes and Hemodynamics in Fusiform Intracranial Aneurysms
,”
AJNR Am. J. Neuroradiol.
0195-6108,
26
(
9
), pp.
2357
2363
.
20.
Karmonik
,
C.
,
Yen
,
C.
,
Diaz
,
O.
,
Klucznik
,
R.
,
Grossman
,
R.
, and
Benndorf
,
G.
, 2010, “
Temporal Variations of Wall Shear Stress Parameters in Intracranial Aneurysmsimportance of Patient-Specific Inflow Waveforms CFD Calculations
,”
Acta Neurochir. Suppl. (Wien)
0065-1419,
152
, pp.
1391
1398
.
21.
Kadirvel
,
R.
,
Ding
,
Y. -H.
,
Dai
,
D.
,
Zakaria
,
H.
,
Robertson
,
A.
,
Danielson
,
M.
,
Lewis
,
D.
,
Cloft
,
H.
, and
Kallmes
,
D.
, 2007, “
The Influence of Hemodynamic Forces on Biomarkers in the Walls of Elastase-Induced Aneurysms in Rabbits
,”
Neuroradiology
0028-3940,
49
, pp.
1041
1053
.
22.
Ku
,
D.
,
Giddens
,
D.
,
Zarins
,
C.
, and
Glagov
,
S.
, 1985, “
Pulsatile Flow and Athersclerosia in the Human Carotid Bifurcation. Positive Correlation Between Plaque Location and Low Oscillating Shear Stresses
,”
Atheriosclerosis, Thrombosis, and Vascular Biology
,
5
, pp.
293
302
.
23.
Gosling
,
R. G.
, and
King
,
D. H.
, 1974, “
Arterial Assessment by Doppler-Shift Ultrasound
,”
Proc. R. Soc. Med.
0035-9157,
67
(
6 Part 1
), pp.
447
449
.
24.
Lindegaard
,
K. -F.
,
Grolimund
,
P.
,
Aaslid
,
R.
, and
Nornes
,
H.
, 1986, “
Evaluation of Cerebral AVM’s Using Transcranial Doppler Ultrasound
,”
J. Neurosurg.
0022-3085,
65
(
3
), pp.
335
344
.
25.
Bellner
,
J.
,
Romner
,
B.
,
Reinstrup
,
P.
,
Kristiansson
,
K. -A.
,
Ryding
,
E.
, and
Brandt
,
L.
, 2004, “
Transcranial Doppler Sonography Pulsatility Index (PI) Reflects Intracranial Pressure (ICP)
,”
Surg. Neurol.
0090-3019,
62
(
1
), pp.
45
51
.
26.
Ku
,
D.
, 1997, “
Blood Flow in Arteries
,”
Annu. Rev. Fluid Mech.
0066-4189,
29
, pp.
399
434
.
27.
Isoda
,
H.
,
Hirano
,
M.
,
Takeda
,
H.
,
Kosugi
,
T.
,
Alley
,
M.
,
Markl
,
M.
,
Pelc
,
N.
, and
Sakahara
,
H.
, 2006, “
Visualization of Hemodynamics in a Silicon Aneurysm Model Using Time-Resolved, 3D, Phase-Contrast MRI
,”
AJNR Am. J. Neuroradiol.
0195-6108,
27
(
5
), pp.
1119
1122
.
28.
Borazjani
,
I.
,
Ge
,
L.
, and
Sotiropoulos
,
F.
, 2008, “
Curvilinear Immersed Boundary Method for Simulating Fluid Structure Interaction With Complex 3D Rigid Bodies
,”
J. Comput. Phys.
0021-9991,
227
(
16
), pp.
7587
7620
.
29.
de Zélicourt
,
D.
,
Ge
,
L.
,
Wang
,
C.
,
Sotiropoulos
,
F.
,
Gilmanov
,
A.
, and
Yoganathan
,
A.
, 2009, “
Flow Simulations in Arbitrarily Complex Cardiovascular Anatomies—An Unstructured Cartesian Grid Approach
,”
Comput. Fluids
0045-7930,
38
(
9
), pp.
1749
1762
.
30.
Borazjani
,
I.
, 2010, “
High-Resolution Fluid–Structure Interaction Simulations of Flow Through a Bi-Leaflet Mechanical Heart Valve in an Anatomic Aorta
,”
Ann. Biomed. Eng.
0090-6964,
38
, pp.
326
344
.
31.
Ge
,
L.
, and
Sotiropoulos
,
F.
, 2007, “
A Numerical Method for Solving the 3D Unsteady Incompressible Navier–Stokes Equations in Curvilinear Domains With Complex Immersed Boundaries
,”
J. Comput. Phys.
0021-9991,
225
(
2
), pp.
1782
1809
.
32.
Gilmanov
,
A.
, and
Sotiropoulos
,
F.
, 2005, “
A Hybrid Cartesian/Immersed Boundary Method for Simulating Flows With 3D, Geometrically Complex, Moving Bodies
,”
J. Comput. Phys.
0021-9991,
207
(
2
), pp.
457
492
.
33.
Perktold
,
K.
, and
Rappitsch
,
G.
, 1995, “
Computer Simulation of Local Blood Flow and Vessel Mechanics in a Compliant Carotid Artery Bifurcation Model
,”
J. Biomech.
0021-9290,
28
(
7
), pp.
845
856
.
34.
Dempere-Marco
,
L.
,
Oubel
,
E.
,
Castro
,
M.
,
Putman
,
C.
,
Frangi
,
A.
, and
Cebral
,
J.
, 2006, Medical Image Computing and Computer-Assisted Intervention MICCAI2006.
35.
He
,
X.
, and
Ku
,
D.
, 1996, “
Pulsatile Flow in the Human Left Coronary Artery Bifurcation: Average Conditions
,”
ASME J. Biomech. Eng.
0148-0731,
118
(
1
), pp.
74
82
.
36.
Burleson
,
A. C.
,
Strother
,
C. M.
, and
Turitto
,
V. T.
, 1995, “
Computer Modeling of Intracranial Saccular and Lateral Aneurysms for the Study of Their Hemodynamics
,”
Neurosurgery
0148-396X,
37
, pp.
774
784
.
37.
Aenis
,
M.
,
Stancampiano
,
A. P.
,
Wakhloo
,
A. K.
, and
Lieber
,
B. B.
, 1997, “
Modeling of Flow in a Straight Stented and Nonstented Side Wall Aneurysm Model
,”
ASME J. Biomech. Eng.
0148-0731,
119
(
2
), pp.
206
212
.
38.
Liou
,
T.
, and
Liou
,
S.
, 2004, “
Pulsatile Flows in a Lateral Aneurysm Anchored on a Stented and Curved Parent Vessel
,”
Exp. Mech.
0014-4851,
44
, pp.
253
260
.
39.
Hunt
,
J. C. R.
,
Wray
,
A. A.
, and
Moin
,
P.
, 1988, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,”
Proceedings of the 1988 Summer Program
, Stanford NASA Centre for Turb. Res., Paper No. CTR-S88.
40.
Gharib
,
M.
,
Rambod
,
E.
, and
Shariff
,
K.
, 1998, “
A Universal Time Scale for Vortex Ring Formation
,”
J. Fluid Mech.
0022-1120,
360
(
1
), pp.
121
140
.
41.
Webster
,
D. R.
, and
Longmire
,
E. K.
, 1998, “
Vortex Rings From Cylinders With Inclined Exits
,”
Phys. Fluids
1070-6631,
10
(
2
), pp.
400
416
.
42.
Tateshima
,
S.
,
Murayama
,
Y.
,
Villablanca
,
J.
,
Morino
,
T.
,
Nomura
,
K.
,
Tanishita
,
K.
, and
Vinuela
,
F.
, 2003, “
In Vitro Measurement of Fluid-Induced Wall Shear Stress in Unruptured Cerebral Aneurysms Harboring Blebs
,”
Stroke
0039-2499,
34
, pp.
187
192
.
43.
Canton
,
G.
,
Levy
,
D.
, and
Lasheras
,
J.
, 2005, “
Changes in the Intra-Aneurysmal Pressure Due to Hydrocoil Embolic System
,”
AJNR Am. J. Neuroradiol.
0195-6108,
26
, pp.
904
907
.
44.
Himburg
,
H.
,
Dowd
,
S.
, and
Friedman
,
M.
, 2007, “
Frequency-Dependent Response of the Vascular Endothelium to Pulsatile Shear Stress
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
293
(
1
), pp.
H645
H653
.
45.
Ujiie
,
H.
,
Tachibana
,
H.
,
Hiramatsu
,
O.
,
Hazel
,
A. L.
,
Matsumoto
,
T.
,
Ogasawara
,
Y.
,
Nakajima
,
H.
,
Hori
,
T.
,
Takakura
,
K.
, and
Kajiya
,
F.
, 1999, “
Effects of Size and Shape (Aspect Ratio) on the Hemodynamics of Saccular Aneurysms: A Possible Index for Surgical Treatment of Intracranial Aneurysms
,”
Neurosurgery
0148-396X,
45
(
1
), pp.
119
130
.
You do not currently have access to this content.