To model the cartilage morphology and the material response, a phenomenological and patient-specific simulation approach incorporating the collagen fiber fabric is proposed. Cartilage tissue response is nearly isochoric and time-dependent under physiological pressure levels. Hence, a viscoelastic constitutive model capable of reproducing finite strains is employed, while the time-dependent deformation change is purely isochoric. The model incorporates seven material parameters, which all have a physical interpretation. To calibrate the model and facilitate further analysis, five human cartilage specimens underwent a number of tests. A series of magnetic resonance imaging (MRI) sequences is taken, next the cartilage surface is imaged, then mechanical indentation tests are completed at 2–7 different locations per sample, resulting in force/displacement data over time, and finally, the underlying bone surface is imaged. Imaging and mechanical testing are performed with a custom-built robotics-based testing device. Stereo reconstruction of the cartilage and subchondral bone surface is employed, which, together with the proposed constitutive model, led to specimen-specific finite element simulations of the mechanical indentation tests. The force-time response of 23 such indentation experiment simulations is optimized to estimate the mean material parameters and corresponding standard deviations. The model is capable of reproducing the deformation behavior of human articular cartilage in the physiological loading domain, as demonstrated by the good agreement between the experiment and numerical results (R2=0.95±0.03, mean±standard deviation of force-time response for 23 indentation tests). To address validation, a sevenfold cross-validation experiment is performed on the 21 experiments representing healthy cartilage. To quantify the predictive error, the mean of the absolute force differences and Pearson’s correlation coefficient are both calculated. Deviations in the mean absolute difference, normalized by the peak force, range from 4% to 90%, with 40±25%(M±SD). The correlation coefficients across all predictions have a minimum of 0.939, and a maximum of 0.993 with 0.975±0.013(M±SD), which demonstrates an excellent match of the decay characteristics. A novel feature of the proposed method is 3D sample-specific numerical tracking of the fiber fabric deformation under general loading. This feature is demonstrated by comparing the estimated fiber fabric deformation with recently published experimental data determined by diffusion tensor MRI. The proposed approach is efficient enough to enable large-scale 3D contact simulations of knee joint loading in simulations with accurate joint geometries.

1.
Mow
,
V. C.
,
Gu
,
W. Y.
, and
Chen
,
F. H.
, 2005, “
Structure and Function of Articular Cartilage and Meniscus
,”
Basic Orthopaedic Biomechanics & Mechano-Biology
, 3rd ed.,
V. C.
Mow
, and
R.
Huiskes
, eds.,
Lippincott Williams & Wilkins
,
Philadelphia, PA
, pp.
181
258
.
2.
Hedlund
,
H.
,
Mengarelli-Widholm
,
S.
,
Reinholt
,
F. P.
, and
Svensson
,
O.
, 1993, “
Stereologic Studies on Collagen in Bovine Articular Cartilage
,”
APMIS
0903-4641,
101
, pp.
133
140
.
3.
Li
,
L. P.
,
Soulhat
,
J.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
, 1999, “
Nonlinear Analysis of Cartilage in Unconfined Ramp Compression Using a Fibril Reinforced Poroelastic Model
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
14
, pp.
673
682
.
4.
DiSilvestro
,
M. R.
, and
Suh
,
J. -K. F.
, 2001, “
A Cross-Validation of the Biphasic Poroviscoelastic Model of Articular Cartilage in Unconfined Compression, Indentation, and Confined Compression
,”
J. Biomech.
0021-9290,
34
, pp.
519
525
.
5.
Li
,
L. P.
, and
Herzog
,
W.
, 2004, “
The Role of Viscoelasticity of Collagen Fibers in Articular Cartilage: Theory and Numerical Formulation
,”
Biorheology
0006-355X,
41
, pp.
181
194
.
6.
Charlebois
,
M.
,
McKee
,
M. D.
, and
Buschmann
,
M. D.
, 2004, “
Nonlinear Tensile Properties of Bovine Articular Cartilage and Their Variation With Age and Depth
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
129
137
.
7.
Filidoro
,
L.
,
Dietrich
,
O.
,
Weber
,
J.
,
Rauch
,
E.
,
Oether
,
T.
,
Wick
,
M.
,
Reiser
,
M. F.
, and
Glaser
,
C.
, 2005, “
High-Resolution Diffusion Tensor Imaging of Human Patellar Cartilage: Feasibility and Preliminary Findings
,”
Magn. Reson. Med.
0740-3194,
53
, pp.
993
998
.
8.
Quinn
,
T. M.
, and
Morel
,
V.
, 2007, “
Microstructural Modeling of Collagen Network Mechanics and Inter-Actions With the Proteoglycan Gel in Articular Cartilage
,”
Biomech. Model. Mechanobiol.
1617-7959,
6
, pp.
73
82
.
9.
Wilson
,
W.
,
van Donkelaar
,
C. C.
,
van Rietbergen
,
B.
,
Ito
,
K.
, and
Huiskes
,
R.
, 2004, “
Stresses in the Local Collagen Network of Articular Cartilage: A Poroviscoelastic Fibril-Reinforced Finite Element Study
,”
J. Biomech.
0021-9290,
37
, pp.
357
366
.
10.
Wilson
,
W.
,
van Donkelaar
,
C. C.
,
van Rietbergen
,
B.
, and
Huiskes
,
R.
, 2005, “
A Fibril-Reinforced Poroviscoelastic Swelling Model for Articular Cartilage
,”
J. Biomech.
0021-9290,
38
, pp.
1195
1204
.
11.
Wilson
,
W.
,
Huyghe
,
J. M.
, and
van Donkelaar
,
C. C.
, 2006, “
A Composition-Based Cartilage Model for the Assessment of Compositional Changes During Cartilage Damage and Adaptation
,”
Osteoarthritis Cartilage
1063-4584,
14
, pp.
554
560
.
12.
Julkunen
,
P.
,
Kiviranta
,
P.
,
Wilson
,
W.
,
Jurvelin
,
J. S.
, and
Korhonen
,
R. K.
, 2007, “
Characterization of Articular Cartilage by Combining Microscopic Analysis With a Fibril-Reinforced Finite-Element Model
,”
J. Biomech.
0021-9290,
40
, pp.
1862
1870
.
13.
Wilson
,
W.
,
Huyghe
,
J. M.
, and
van Donkelaar
,
C. C.
, 2007, “
Depth-Dependent Compressive Equilibrium Properties of Articular Cartilage Explained by Its Composition
,”
Biomech. Model. Mechanobiol.
1617-7959,
6
, pp.
43
53
.
14.
García
,
J. J.
, and
Cortés
,
D. H.
, 2007, “
A Biphasic Viscohyperelastic Fibril-Reinforced Model for Articular Cartilage: Formulation and Comparison With Experimental Data
,”
J. Biomech.
0021-9290,
40
, pp.
1737
1744
.
15.
Julkunen
,
P.
,
Korhonen
,
R. K.
,
Herzog
,
W.
, and
Jurvelin
,
J. S.
, 2008, “
Uncertainties in Indentation Testing of Articular Cartilage: A Fibril-Reinforced Poroviscoelastic Study
,”
Med. Eng. Phys.
1350-4533,
30
, pp.
506
515
.
16.
Benninghoff
,
A.
, 1925, “
Form und Bau der Gelenkknorpel in ihren Beziehungen zur Funktion. II. Der Aufbau des Gelenkknorpels in seinen Beziehungen zur Funktion
,”
Z. Zellforsch Mikrosk Anat.
0044-3794,
2
, pp.
783
862
.
17.
Han
,
S. -K.
,
Federico
,
S.
,
Epstein
,
M.
, and
Herzog
,
W.
, 2005, “
An Articular Cartilage Contact Model Based on Real Surface Geometry
,”
J. Biomech.
0021-9290,
38
, pp.
179
184
.
18.
Herzog
,
W.
, and
Federico
,
S.
, 2006, “
Considerations on Joint and Articular Cartilage Mechanics
,”
Biomech. Model. Mechanobiol.
1617-7959,
5
, pp.
64
81
.
19.
Eckstein
,
F.
, and
Glaser
,
C.
, 2004, “
Measuring Cartilage Morphology With Quantitative Magnetic Resonance Imaging
,”
Semin. Musculoskelet. Radiol.
,
8
, pp.
329
53
. 1089-7860
20.
Salai
,
M.
,
Givon
,
U.
,
Messer
,
Y.
, and
von Versen
,
R.
, 1997, “
Electron Microscopic Study on the Effects of Different Preservation Methods for Meniscal Cartilage
,”
Ann. Transplant
1425-9524,
2
, pp.
52
54
.
21.
Gleizes
,
V.
,
Viguier
,
E.
,
Féron
,
J. M.
,
Canivet
,
S.
, and
Lavaste
,
F.
, 1998, “
Effects of Freezing on the Biomechanics of the Intervertebral Disc
,”
Surg. Radiol. Anat.
0930-1038,
20
, pp.
403
407
.
22.
Huang
,
C. Y.
,
Soltz
,
M. A.
,
Kopacz
,
M.
,
Mow
,
V. C.
, and
Ateshian
,
G. A.
, 2003, “
Experimental Verification of the Roles of Intrinsic Matrix Viscoelasticity and Tension-Compression Nonlinearity in the Biphasic Response of Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
84
93
.
23.
Huang
,
C. -Y.
,
Stankiewicz
,
A.
,
Ateshian
,
G. A.
, and
Mow
,
V. C.
, 2005, “
Anisotropy, Inhomogeneity, and Tension-Compression Nonlinearity of Human Glenohumeral Cartilage in Finite Deformation
,”
J. Biomech.
0021-9290,
38
, pp.
799
809
.
24.
Trobin
,
W.
,
Rüther
,
M.
,
Millington
,
S.
, and
Bischof
,
H.
, 2007, “
A Vision-Based System for Biomechanical Testing of Articular Cartilage
,”
Proceedings of the 31st AAPR/OAGM, Performance Evaluation for Computer Vision
,
W.
Ponweiser
,
M.
Vincze
, and
C.
Beleznai
, eds.,
Ősterreichische Computer
,
Gesellschaft
, pp.
113
120
.
25.
Athanasiou
,
K. A.
,
Niederauer
,
G. G.
, and
Schenck
,
R. C.
, Jr.
, 1995, “
Biomechanical Topography of Human Ankle Cartilage
,”
Ann. Biomed. Eng.
0090-6964,
23
, pp.
697
704
.
26.
Newberry
,
W. N.
,
Mackenzie
,
C. D.
, and
Haut
,
R. C.
, 1998, “
Blunt Impact Causes Changes in Bone and Cartilage in a Regularly Exercised Animal Model
,”
J. Orthop. Res.
0736-0266,
16
, pp.
348
354
.
27.
Newberry
,
W. N.
,
Garcia
,
J. J.
,
Mackenzie
,
C. D.
,
Decamp
,
C. E.
, and
Haut
,
R. C.
, 1998, “
Analysis of Acute Mechanical Insult in an Animal Model of Post-Traumatic Osteoarthrosis
,”
J. Biomed. Eng.
0141-5425,
120
, pp.
704
709
.
28.
Verteramo
,
A.
, and
Seedhom
,
B. B.
, 2007, “
Effect of a Single Impact Loading on the Structure and Mechanical Properties of Articular Cartilage
,”
J. Biomech.
0021-9290,
40
, pp.
3580
3589
.
29.
Burgin
,
L. V.
, and
Aspden
,
R. M.
, 2008, “
Impact Testing to Determine the Mechanical Properties of Articular Cartilage in Isolation and on Bone
,”
J. Mater. Sci.: Mater. Med.
0957-4530,
19
, pp.
703
711
.
30.
Koeller
,
W.
,
Kunow
,
J.
,
Ostermeyer
,
O.
,
Stomberg
,
P.
,
Boos
,
C.
, and
Russlies
,
M.
, 2008, “
A Simple Measuring Device for Laboratory Indentation Tests on Cartilage
,”
Biomed. Tech.
0013-5585,
53
, pp.
59
64
.
31.
Holzapfel
,
G. A.
, 1996, “
On Large Strain Viscoelasticity: Continuum Formulation and Finite Element Applications to Elastomeric Structures
,”
Int. J. Numer. Methods Eng.
0029-5981,
39
, pp.
3903
3926
.
32.
Holzapfel
,
G. A.
, and
Gasser
,
T. C.
, 2001, “
A Viscoelastic Model for Fiber-Reinforced Composites at Finite Strains: Continuum Basis, Computational Aspects and Applications
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
4379
4403
.
33.
Taylor
,
R. L.
, 2007, FEAP—A Finite Element Analysis Program, Version 8.2 User Manual, University of California, Berkeley, CA.
34.
Wong
,
M.
,
Ponticiello
,
M.
,
Kovanen
,
V.
, and
Jurvelin
,
J. S.
, 2000, “
Volumetric Changes of Articular Cartilage During Stress Relaxation in Unconfined Compression
,”
J. Biomech.
0021-9290,
33
, pp.
1049
1054
.
35.
Bachrach
,
N. M.
,
Mow
,
V. C.
, and
Guilak
,
F.
, 1998, “
Incompressibility of the Solid Matrix of Articular Cartilage Under High Hydrostatic Pressures
,”
J. Biomech.
0021-9290,
31
, pp.
445
451
.
36.
Park
,
S.
,
Krishnan
,
R.
,
Nicoll
,
S. B.
, and
Ateshian
,
G. A.
, 2003, “
Cartilage Interstitial Fluid Load Support in Unconfined Compression
,”
J. Biomech.
0021-9290,
36
, pp.
1785
1796
.
37.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
, 1998, “
Experimental Verification and Theoretical Prediction of Cartilage Interstitial Fluid Pressurization at an Impermeable Contact Interface in Confined Compression
,”
J. Biomech.
0021-9290,
31
, pp.
927
934
.
38.
Jurvelin
,
J. S.
,
Buschmann
,
M. D.
, and
Hunziker
,
E. B.
, 1997, “
Optical and Mechanical Determination of Poisson’s Ratio of Adult Bovine Humeral Articular Cartilage
,”
J. Biomech.
0021-9290,
30
, pp.
235
241
.
39.
Huang
,
C. -Y.
,
Mow
,
V. C.
, and
Ateshian
,
G. A.
, 2001, “
The Role of Flow-Independent Viscoelasticity in the Biphasic Tensile and Compressive Responses of Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
123
, pp.
410
417
.
40.
Mak
,
A. F.
, 1986, “
The Apparent Viscoelastic Behaviour of Articular Cartilage—The Contributions From the Intrinsic Matrix Viscoplasticity and Interstitial Fluid Flows
,”
ASME J. Biomech. Eng.
0148-0731,
108
, pp.
123
130
.
41.
Schmidt
,
M. B.
,
Mow
,
V. C.
,
Chun
,
L. E.
, and
Eyre
,
D. R.
, 1990, “
Effects of Proteoglycan Extraction on the Tensile Behavior of Articular Cartilage
,”
J. Orthop. Res.
0736-0266,
8
, pp.
353
363
.
42.
Zhu
,
W.
,
Mow
,
V. C.
,
Koob
,
T. J.
, and
Eyre
,
D. R.
, 1993, “
Viscoelastic Shear Properties of Articular Cartilage and the Effects of Glycosidase Treatments
,”
J. Orthop. Res.
0736-0266,
11
, pp.
771
781
.
43.
Roth
,
V.
, and
Mow
,
V. C.
, 1980, “
The Intrinsic Tensile Behavior of the Matrix of Bovine Articular Cartilage and Its Variation With Age
,”
J. Bone Jt. Surg.
,
62
, pp.
1102
1117
.
44.
Silver
,
F. H.
,
Bradica
,
G.
, and
Tria
,
A.
, 2001, “
Viscoelastic Behavior of Osteoarthritic Cartilage
,”
Connect. Tissue Res.
0300-8207,
42
, pp.
223
233
.
45.
Woo
,
S. L. Y.
,
Simon
,
B. R.
,
Kuei
,
S. C.
, and
Akeson
,
W. H.
, 1980, “
Quasi-Linear Viscoelastic Properties of Normal Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
102
, pp.
85
90
.
46.
Hayes
,
W. C.
, and
Bodine
,
A. J.
, 1978, “
Flow-Independent Viscoelastic Properties of Articular Cartilage Matrix
,”
J. Biomech.
0021-9290,
11
, pp.
407
419
.
47.
Holzapfel
,
G. A.
, 2000,
Nonlinear Solid Mechanics. A Continuum Approach for Engineering
,
Wiley
,
New York
.
48.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
, 2000, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast.
0374-3535,
61
, pp.
1
48
.
49.
Holzapfel
,
G. A.
,
Stadler
,
M.
, and
Gasser
,
T. C.
, 2005, “
Changes in the Mechanical Environment of Stenotic Arteries During Interaction With Stents: Computational Assessment of Parametric Stent Design
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
166
180
.
50.
Holzapfel
,
G. A.
,
Sommer
,
G.
,
Gasser
,
C. T.
, and
Regitnig
,
P.
, 2005, “
Determination of the Layer-Specific Mechanical Properties of Human Coronary Arteries With Non-Atherosclerotic Intimal Thickening, and Related Constitutive Modelling
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
289
, pp.
H2048
H2058
.
51.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
, 2006, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
J. R. Soc., Interface
1742-5689,
3
, pp.
15
35
.
52.
Herrmann
,
L. R.
, and
Peterson
,
F. E.
, 1968, “
A Numerical Procedure for Viscoelastic Stress Analysis
,”
Proceedings of the Seventh Meeting of ICRPG Mechanical Behavior Working Group
, Orlando, FL.
53.
Taylor
,
R. L.
,
Pister
,
K. S.
, and
Goudreau
,
G. L.
, 1970, “
Thermomechanical Analysis of Viscoelastic Solids
,”
Int. J. Numer. Methods Eng.
0029-5981,
2
, pp.
45
59
.
54.
Simo
,
J. C.
, 1987, “
On a Fully Three-Dimensional Finite-Strain Viscoelastic Damage Model: Formulation and Computational Aspects
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
60
, pp.
153
173
.
55.
Simo
,
J. C.
, and
Hughes
,
T. J. R.
, 1998,
Computational Inelasticity
,
Springer-Verlag
,
New York
.
56.
Geuzaine
,
C.
, and
Remacle
,
J. -F.
, 2008, GMSH: A three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, Version 2.2.4, www.geuz.org/gmsh/www.geuz.org/gmsh/.
57.
de Visser
,
S. K.
,
Crawford
,
R. W.
, and
Pope
,
J. M.
, 2008, “
Structural Adaptations in Compressed Articular Cartilage Measured by Diffusion Tensor Imaging
,”
Osteoarthritis Cartilage
1063-4584,
16
, pp.
83
89
.
58.
de Visser
,
S. K.
,
Bowden
,
J. C.
,
Wentrup-Bryne
,
E.
,
Rintoul
,
L.
,
Bostrom
,
T.
,
Pope
,
J. M.
, and
Momot
,
K. I.
, 2008, “
Anisotropy of Collagen Fibre Alignment in Bovine Cartilage: Comparison of Polarised Light Microscopy and Spatially Resolved Diffusion-Tensor Measurements
,”
Osteoarthritis Cartilage
1063-4584,
16
, pp.
689
697
.
59.
Duda
,
R. O.
,
Stork
,
D. G.
, and
Hart
,
P. E.
, 2000,
Pattern Classification
, 2nd ed.,
Wiley
,
Chichester
.
60.
Meder
,
R.
,
de Visser
,
S. K.
,
Bowden
,
J. C.
,
Bostrom
,
T.
, and
Pope
,
J. M.
, 2006, “
Diffusion Tensor Imaging of Articular Cartilage as a Measure of Tissue Microstructure
,”
Osteoarthritis Cartilage
1063-4584,
14
, pp.
875
881
.
61.
Swann
,
A. C.
, and
Seedhom
,
B. B.
, 1993, “
The Stiffness of Normal Articular Cartilage and the Predominant Acting Stress Levels: Implications for the Aetiology of Osteoarthrosis
,”
Br. J. Rheumatol.
0263-7103,
32
, pp.
16
25
.
62.
Wilson
,
W.
,
Driesseny
,
N. J. B.
,
van Donkelaar
,
C. C.
, and
Ito
,
K.
, 2006, “
Prediction of Collagen Orientation in Articular Cartilage by a Collagen Remodeling Algorithm
,”
Osteoarthritis Cartilage
1063-4584,
14
, pp.
1196
1202
.
63.
Ateshian
,
G. A.
,
Chahine
,
N. O.
,
Basalo
,
I. M.
, and
Hung
,
C. T.
, 2004, “
The Correspondence Between Equilibrium Biphasic and Triphasic Material Properties in Mixture Models of Articular Cartilage
,”
J. Biomech.
0021-9290,
37
, pp.
391
400
.
64.
Chahine
,
N. O.
,
Wang
,
C. C.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
, 2004, “
Anisotropic Strain-Dependent Material Properties of Bovine Articular Cartilage in the Transitional Range From Tension to Compression
,”
J. Biomech.
0021-9290,
37
, pp.
1251
1261
.
65.
Ehlers
,
W.
, and
Markert
,
B.
, 2001, “
A Linear Viscoelastic Biphasic Model for Soft Tissues Based on the Theory of Porous Media
,”
ASME J. Biomech. Eng.
0148-0731,
123
, pp.
418
424
.
66.
Markert
,
B.
, 2005 “
Porous Media Viscoelasticity With Application to Polymeric Foams
,” Ph.D. thesis, Universität Stuttgart, Stuttgart, Germany.
67.
Mansour
,
J. M.
, 2008, “
Biomechanics of Cartilage
,”
Kinesiology: The Mechanics and Pathomechanics of Human Movement
, 2nd ed.,
C. A.
Oatis
, ed.,
Lippincott Williams and Wilkins
,
Philadelphia, PA
, pp.
69
83
.
You do not currently have access to this content.