The intervertebral disk (IVD) is the largest avascular structure in the human body. Transport of small molecules in IVD is mainly through diffusion from the endplates and the peripheral blood vessels surrounding IVD. Studies have investigated the structure, chemical components, and water content in IVD, but to our knowledge no study has investigated the effect of mechanical loading on oxygen transport in IVD. The objective of this study was to determine the strain-dependent behavior of oxygen diffusivity in IVD tissue. A one-dimensional steady-state diffusion experiment was designed and performed to determine the oxygen diffusivity in bovine annulus fibrosus (AF). The oxygen diffusivity was calculated using equation derived from Fick’s law. A total of 20 AF specimens (d=6mm, h0.5mm) from bovine coccygeal IVD were used to determine oxygen diffusivity at three levels of compressive strain. The average oxygen diffusivity (mean±SD) of bovine AF in the axial direction was 1.43±0.242×105cm2/s(n=20) at 4.68±1.67% compressive strain level, 1.05±0.282×105cm2/s(n=20) at 14.2±1.50% strain level, and 7.71±1.63×106cm2/s(n=20) at 23.7±1.34% strain level. There was a significant decrease in oxygen diffusivity with increasing level of compressive strain (ANOVA, p<0.05). Oxygen diffusivity of bovine AF in the axial direction has been determined. The mechanical loading has a significant effect on oxygen transport in IVD tissues. This study is important in understanding nutritional transport in IVD tissues and related disk degeneration.

1.
NIH
, 1997, “
Research on Low Back Pain and Common Spinal Disorders
,” NIH Guide Vol. No.
26
(16).
2.
Eyre
,
D. R.
,
Benya
,
P.
,
Buckwalter
,
J.
,
Caterson
,
B.
,
Heinegard
,
D.
,
Oegema
,
T.
,
Pearce
,
R.
,
Pope
,
M.
, and
Urban
,
J.
, 1989, “
Intervertebral Disk: Basic Science Perspectives
,”
New Perspectives on Low Back Pain
,
J. W.
Frymoyer
and
S. L.
Gordon
, eds.,
American Academy of Orthopaedic Surgeons
,
Park Ridge, IL
, pp.
147
207
.
3.
Kelsey
,
J. L.
,
Mundt
,
D. F.
, and
Golden
,
A. L.
, 1992, “
Epidemiology of Low Back Pain
,”
The Lumbar Spine and Back Pain
,
J. I. V.
Malcolm
, ed.,
Churchill Livingstone
,
New York
, pp.
537
549
.
4.
White
,
A. A.
, 1981, “
Biomechanics of Lumbar Spine and Sacroiliac Articulation: Relevance to Idiopathic Low Back Pain
,”
Symposium on Idiopathic Low Back Pain
,
A. A.
White
and
S. L.
Gordon
, eds.,
Mosby
,
St. Louis
, pp.
296
322
.
5.
Buckwalter
,
J. A.
, 1995, “
Aging and Degeneration of the Human Intervertebral Disc
,”
Spine
0362-2436,
20
(
11
), pp.
1307
1314
.
6.
Urban
,
J. P.
,
Holm
,
S.
, and
Maroudas
,
A.
, 1978, “
Diffusion of Small Solutes Into the Intervertebral Disc: An In Vivo Study
,”
Biorheology
0006-355X,
15
(
3–4
), pp.
203
221
.
7.
Maroudas
,
A.
, 1975, “
Biophysical Chemistry of Cartilaginous Tissues With Special Reference to Solute and Fluid Transport
,”
Biorheology
0006-355X,
12
, pp.
233
248
.
8.
Urban
,
J. P.
,
Holm
,
S.
,
Maroudas
,
A.
, and
Nachemson
,
A.
, 1982, “
Nutrition of the Intervertebral Disc: Effect of Fluid Flow on Solute Transport
,”
Clin. Orthop. Relat. Res.
0009-921X,
170
, pp.
296
302
.
9.
Nachemson
,
A.
,
Lewin
,
T.
,
Maroudas
,
A.
, and
Freeman
,
M. A.
, 1970, “
In Vitro Diffusion of Dye Through the End-Plates and the Annulus Fibrosus of Human Lumbar Inter-Vertebral Discs
,”
Acta Orthop. Scand.
0001-6470,
41
(
6
), pp.
589
607
.
10.
Holm
,
S.
, and
Nachemson
,
A.
, 1982, “
Nutritional Changes in the Canine Intervertebral Disc After Spinal Fusion
,”
Clin. Orthop. Relat. Res.
0009-921X,
169
, pp.
243
258
.
11.
Horner
,
H. A.
, and
Urban
,
J. P.
, 2001, “
2001 Volvo Award Winner in Basic Science Studies: Effect of Nutrient Supply on the Viability of Cells From the Nucleus Pulposus of the Intervertebral Disc
,”
Spine
0362-2436,
26
(
23
), pp.
2543
2549
.
12.
Bibby
,
S. R.
,
Fairbank
,
J. C.
,
Urban
,
M. R.
, and
Urban
,
J. P.
, 2002, “
Cell Viability in Scoliotic Discs in Relation to Disc Deformity and Nutrient Levels
,”
Spine
0362-2436,
27
(
20
), pp.
2220
2228
.
13.
Urban
,
J. P.
, 2001, “
The Role of the Physicochemical Environment in Determining Disc Cell Behaviour
,”
Biochem. Soc. Trans.
0300-5127,
30
(
6
), pp.
858
864
.
14.
Adams
,
M. A.
, and
Hutton
,
W. C.
, 1986, “
The Effect of Posture on Diffusion Into Lumbar Intervertebral Discs
,”
J. Anat.
0021-8782,
147
, pp.
121
134
.
15.
Oshima
,
H.
,
Ishihara
,
H.
,
Urban
,
J. P.
, and
Tsuji
,
H.
, 1993, “
The Use of Coccygeal Discs to Study Intervertebral Disc Metabolism
,”
J. Orthop. Res.
0736-0266,
11
(
3
), pp.
332
338
.
16.
Beckstein
,
J. C.
,
Sen
,
S.
,
Schaer
,
T. P.
,
Vresilovic
,
E. J.
, and
Elliot
,
D. M.
, 2008, “
Comparison of Animal Discs Used in Disc Research to Human Lumbar Disc
,”
Spine
0362-2436,
33
(
6
), pp.
E166
E173
.
17.
Gu
,
W. Y.
, and
Justiz
,
M. A.
, 2002, “
Apparatus for Measuring the Swelling Dependent Electrical Conductivity of Charged Hydrated Soft Tissues
,”
ASME J. Biomech. Eng.
0148-0731,
124
, pp.
790
793
.
18.
Bibby
,
S. R. S.
,
Jones
,
D. A.
,
Ripley
,
R. M.
, and
Urban
,
J. P.
, 2005, “
Metabolism of the Intervertebral Disc: Effects of Low Levels of Oxygen, Glucose, and pH on Rates of Energy Metabolism of Bovine Nucleus Pulposus Cells
,”
Spine
0362-2436,
30
(
5
), pp.
487
496
.
19.
Malda
,
J.
,
Rouwkema
,
J.
,
Martens
,
D. E.
,
Le Comte
,
E. P.
,
Kooy
,
F. K.
,
Tramper
,
J.
,
van Blitterswijk
,
C. A.
, and
Riesle
,
J.
, 2004, “
Oxygen Gradients in Tissue-Engineered PEGT/PBT Cartilaginous Constructs: Measurement and Modeling
,”
Biotechnol. Bioeng.
0006-3592,
86
(
1
), pp.
9
18
.
20.
Jackson
,
A. R.
,
Yuan
,
T. Y.
,
Huang
,
C. Y.
,
Travascio
,
F.
, and
Gu
,
W. Y.
, 2008, “
Effect of Compression and Anisotropy on the Diffusion of Glucose in Annulus Fibrosus
,”
Spine
0362-2436,
33
(
1
), pp.
1
7
.
21.
Haselgrove
,
J. C.
,
Shapiro
,
I. M.
, and
Silverton
,
S. F.
, 1993, “
Computer Modeling of the Oxygen Supply and Demand of Cells of the Avian Growth Cartilage
,”
Am. J. Physiol.
0002-9513,
265
(
2
), pp.
C497
C506
.
22.
O'Hare
,
D.
,
Winlove
,
C. P.
, and
Parker
,
K. H.
, 1991, “
Electrochemical Method for Direct Measurement of Oxygen Concentration and Diffusivity in the Intervertebral Disc: Electrochemical Characterization and Tissue-Sensor Interactions
,”
J. Biomed. Eng.
0141-5425,
13
(
4
), pp.
304
312
.
23.
Macpherson
,
J. V.
,
O'Hare
,
D.
,
Unwin
,
P. R.
, and
Winlove
,
C. P.
, 1997, “
Quantitative Spatially Resolved Measurements of Mass Transfer Through Laryngeal Cartilage
,”
Biophys. J.
0006-3495,
73
(
5
), pp.
2771
2781
.
24.
Burstein
,
D.
,
Gray
,
M. L.
,
Hartman
,
A. L.
,
Gipe
,
R.
, and
Foy
,
B. D.
, 1993, “
Diffusion of Small Solutes in Cartilage as Measured by Nuclear Magnetic Resonance (NMR) Spectroscopy and Imaging
,”
J. Orthop. Res.
0736-0266,
11
(
4
), pp.
465
478
.
25.
Quinn
,
T. M.
,
Kocian
,
P.
, and
Meister
,
J. J.
, 2000, “
Static Compression is Associated With Decreased Diffusivity of Dextrans in Cartilage Explants
,”
Arch. Biochem. Biophys.
0003-9861,
384
, pp.
327
334
.
26.
Quinn
,
T. M.
,
Morel
,
V.
, and
Meister
,
J. J.
, 2001, “
Static Compression of Articular Cartilage can Reduce Solute Diffusivity and Partitioning: Implications for the Chondrocyte Biological Response
,”
J. Biomech.
0021-9290,
34
(
11
), pp.
1463
1469
.
27.
Ngwa
,
W.
,
Geier
,
O.
,
Stallmach
,
F.
,
Naji
,
L.
,
Schiller
,
J.
, and
Arnold
,
K.
, 2002, “
Cation Diffusion in Cartilage Measured by Pulsed Field Gradient NMR
,”
Eur. Biophys. J.
0175-7571,
31
(
1
), pp.
73
80
.
28.
Chiu
,
E. J.
,
Newitt
,
D. C.
,
Segal
,
M. R.
,
Hu
,
S. S.
,
Lotz
,
J. C.
, and
Majumdar
,
S.
, 2001, “
Magnetic Resonance Imaging Measurement of Relaxation and Water Diffusion in the Human Lumbar Intervertebral Disc Under Compression In Vitro
,”
Spine
0362-2436,
26
(
19
), pp.
E437
E444
.
29.
Drew
,
S. C.
,
Silva
,
P.
,
Crozier
,
S.
, and
Pearcy
,
M. J.
, 2004, “
A Diffusion and T2 Relaxation MRI Study of the Ovine Lumbar Intervertebral Disc Under Compression In Vitro
,”
Phys. Med. Biol.
0031-9155,
49
(
16
), pp.
3585
3592
.
30.
Gu
,
W. Y.
,
Yao
,
H.
,
Vega
,
A. L.
, and
Flagler
,
D.
, 2004, “
Diffusivity of Ions in Agarose Gels and Intervertebral Disc: Effect of Porosity
,”
Ann. Biomed. Eng.
0090-6964,
32
, pp.
1710
1717
.
31.
Himmelblau
,
D. M.
, 1964, “
Diffusion of Dissolved Gases in Liquids
,”
Chem. Rev. (Washington, D.C.)
0009-2665,
64
, pp.
527
550
.
32.
Gu
,
W. Y.
,
Yao
,
H.
,
Huang
,
C. -Y.
, and
Cheung
,
H. S.
, 2003, “
New Insight Into Deformation-Dependent Hydraulic Permeability of Gels and Cartilage, and Dynamic Behavior of Agarose Gels in Confined Compression
,”
J. Biomech.
0021-9290,
36
, pp.
593
598
.
33.
Kraemer
,
J.
,
Kolditz
,
D.
, and
Gowin
,
R.
, 1985, “
Water and Electrolyte Content of Human Intervertebral Discs Under Variable Load
,”
Spine
0362-2436,
10
(
1
), pp.
69
71
.
34.
Ohshima
,
H.
,
Tsuji
,
H.
,
Hiarano
,
N.
,
Ishihara
,
H.
,
Katoh
,
Y.
, and
Yamada
,
H.
, 1989, “
Water Diffusion Pathway, Swelling Pressure, and Biomechanical Properties of the Intervertebral Disc During Compression Load
,”
Spine
0362-2436,
14
, pp.
1234
1244
.
35.
Adams
,
M. A.
, and
Hutton
,
W. C.
, 1983, “
The Effect of Posture on the Fluid Content of Lumbar Intervertebral Discs
,”
Spine
0362-2436,
8
(
6
), pp.
665
671
.
36.
Iatridis
,
J. C.
, and
ap Gwynn
,
I.
, 2004, “
Mechanisms for Mechanical Damage in the Intervertebral Disc Annulus Fibrosus
,”
J. Biomech.
0021-9290,
37
, pp.
1165
1175
.
37.
Maroudas
,
A.
,
Stockwell
,
R. A.
,
Nachemson
,
A.
, and
Urban
,
J.
, 1975, “
Factors Involved in the Nutrition of the Human Lumbar Intervertebral Disc: Cellularity and Diffusion of Glucose In Vitro
,”
J. Anat.
0021-8782,
120
(
1
), pp.
113
130
.
38.
Travascio
,
F.
, and
Gu
,
W.
, 2007, “
Anisotropic Diffusive Transport in Annulus Fibrosus: Experimental Determination of the Diffusion Tensor by FRAP Technique
,”
Ann. Biomed. Eng.
0090-6964,
35
(
10
), pp.
1739
1748
.
39.
Jackson
,
A. R.
,
Yao
,
H.
,
Brown
,
M. D.
, and
Gu
,
W. Y.
, 2006, “
Anisotropic Ion Diffusivity in Intervertebral Disc: An Electrical Conductivity Approach
,”
Spine
0362-2436,
31
, pp.
2783
2789
.
40.
Hsu
,
E. W.
, and
Setton
,
L. A.
, 1999, “
Diffusion Tensor Microscopy of the Intervertebral Disc Anulus Fibrosus
,”
Magn. Reson. Med.
0740-3194,
41
(
5
), pp.
992
999
.
You do not currently have access to this content.