Targeted delivery of therapeutics is an area of vigorous research, and peptide- and aptamer-functionalized nanovectors are a promising class of targeted delivery vehicles. Both peptide- and aptamer-targeting ligands can be readily designed to bind a target selectively with high affinity, and more importantly are molecules accessible by chemical synthesis and relatively compact compared with antibodies and full proteins. The multitude of peptide ligands that have been used for targeted delivery are covered in this review, with discussion of binding selectivity and targeting performance for these peptide sequences where possible. Aptamers are RNA or DNA strands evolutionarily engineered to specifically bind a chosen target. Although use of aptamers in targeted delivery is a relatively new avenue of research, the current state of the field is covered and promises of future advances in this area are highlighted. Liposomes, the classic drug delivery vector, and polymeric nanovectors functionalized with peptide or aptamer binding ligands will be discussed in this review, with the exclusion of other drug delivery vehicles. Targeted delivery of therapeutics, from DNA to classic small molecule drugs to protein therapeutics, by these targeted nanovectors is reviewed with coverage of both in vitro and in vivo deliveries. This is an exciting and dynamic area of research and this review seeks to discuss its broad scope.

1.
Winau
,
F.
,
Westphal
,
O.
, and
Winau
,
R.
, 2004, “
Paul Ehrlich—In Search of the Magic Bullet
,”
Microbes Infect.
1286-4579,
6
(
8
), pp.
786
789
.
2.
Ehrlich
,
P.
, 1901, “
Die Seitenkettentheorie und ihre Gegner
,”
Münch. Med. Wschr.
,
18
, pp.
2123
2124
.
3.
Moghimi
,
S. M.
,
Hunter
,
A. C.
, and
Murray
,
J. C.
, 2001, “
Long-Circulating and Target-Specific Nanoparticles: Theory to Practice
,”
Pharmacol. Rev.
0031-6997,
53
(
2
), pp.
283
318
.
4.
Lin
,
J. J.
,
Ghoroghchian
,
P. P.
,
Zhang
,
Y.
, and
Hammer
,
D. A.
, 2006, “
Adhesion of Antibody-Functionalized Polymersomes
,”
Langmuir
0743-7463,
22
(
9
), pp.
3975
3979
.
5.
Bae
,
Y.
,
Nishiyama
,
N.
, and
Kataoka
,
K.
, 2007, “
In Vivo Antitumor Activity of the Folate-Conjugated pH-Sensitive Polymeric Micelle Selectively Releasing Adriamycin in the Intracellular Acidic Compartments
,”
Bioconjugate Chem.
1043-1802,
18
(
4
), pp.
1131
1139
.
6.
Breunig
,
M.
,
Bauer
,
S.
, and
Goepferich
,
A.
, 2008, “
Polymers and Nanoparticles: Intelligent Tools for Intracellular Targeting?
,”
Eur. J. Pharm. Biopharm.
0939-6411,
68
(
1
), pp.
112
128
.
7.
Torchilin
,
V. P.
, 2006, “
Recent Approaches to Intracellular Delivery of Drugs and DNA and Organelle Targeting
,”
Annu. Rev. Biomed. Eng.
1523-9829,
8
(
1
), pp.
343
375
.
8.
Matsumura
,
Y.
, and
Maeda
,
H.
, 1986, “
A New Concept for Macromolecular Therapeutics in Cancer-Chemotherapy—Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent SMANCs
,”
Cancer Res.
0008-5472,
46
(
12
), pp.
6387
6392
.
9.
Folkman
,
J.
, 1995, “
Angiogenesis in Cancer, Vascular, Rheumatoid and Other Disease
,”
Nat. Med.
1078-8956,
1
(
1
), pp.
27
30
.
10.
Skinner
,
S. A.
,
Tutton
,
P. J. M.
, and
O'Brien
,
P. E.
, 1990, “
Microvascular Architecture of Experimental Colon Tumors in the Rat
,”
Cancer Res.
0008-5472,
50
(
8
), pp.
2411
2417
.
11.
Maeda
,
H.
,
Wu
,
J.
,
Sawa
,
T.
,
Matsumura
,
Y.
, and
Hori
,
K.
, 2000, “
Tumor Vascular Permeability and the EPR Effect in Macromolecular Therapeutics: A Review
,”
J. Controlled Release
0168-3659,
65
(
1–2
), pp.
271
284
.
12.
Maeda
,
H.
,
Sawa
,
T.
, and
Konno
,
T.
, 2001, “
Mechanism of Tumor-Targeted Delivery of Macromolecular Drugs, Including the EPR Effect in Solid Tumor and Clinical Overview of the Prototype Polymeric Drug SMANCS
,”
J. Controlled Release
0168-3659,
74
(
1–3
), pp.
47
61
.
13.
Noguchi
,
Y.
,
Wu
,
J.
,
Duncan
,
R.
,
Strohalm
,
J.
,
Ulbrich
,
K.
,
Akaike
,
T.
, and
Maeda
,
H.
, 1998, “
Early Phase Tumor Accumulation of Macromolecules: A Great Difference in Clearance Rate Between Tumor and Normal Tissues
,”
Cancer Sci.
,
89
(
3
), pp.
307
314
. 1347-9032
14.
Stroh
,
M.
,
Zimmer
,
J. P.
,
Duda
,
D. G.
,
Levchenko
,
T. S.
,
Cohen
,
K. S.
,
Brown
,
E. B.
,
Scadden
,
D. T.
,
Torchilin
,
V. P.
,
Bawendi
,
M. G.
,
Fukumura
,
D.
, and
Jain
,
R. K.
, 2005, “
Quantum Dots Spectrally Distinguish Multiple Species Within the Tumor Milieu In Vivo
,”
Nat. Med.
1078-8956,
11
(
6
), pp.
678
682
.
15.
Maeda
,
H.
, 2001, “
SMANCS and Polymer-Conjugated Macromolecular Drugs: Advantages in Cancer Chemotherapy
,”
Adv. Drug Delivery Rev.
0169-409X,
46
(
1–3
), pp.
169
185
.
16.
Yuan
,
F.
,
Dellian
,
M.
,
Fukumura
,
D.
,
Leunig
,
M.
,
Berk
,
D. A.
,
Torchilin
,
V. P.
, and
Jain
,
R. K.
, 1995, “
Vascular Permeability in a Human Tumor Xenograft: Molecular Size Dependence and Cutoff Size
,”
Cancer Res.
0008-5472,
55
(
17
), pp.
3752
3756
.
17.
Brigger
,
I.
,
Dubernet
,
C.
, and
Couvreur
,
P.
, 2002, “
Nanoparticles in Cancer Therapy and Diagnosis
,”
Adv. Drug Delivery Rev.
0169-409X,
54
(
5
), pp.
631
651
.
18.
Iyer
,
A. K.
,
Khaled
,
G.
,
Fang
,
J.
, and
Maeda
,
H.
, 2006, “
Exploiting the Enhanced Permeability and Retention Effect for Tumor Targeting
,”
Drug Discovery Today
1359-6446,
11
(
17–18
), pp.
812
818
.
19.
Lasic
,
D. D.
, and
Needham
,
D.
, 1995, “
The “Stealth” Liposome: A Prototypical Biomaterial
,”
Chem. Rev. (Washington, D.C.)
0009-2665,
95
(
8
), pp.
2601
2628
.
20.
Oku
,
N.
, 1999, “
Anticancer Therapy Using Glucuronate Modified Long-Circulating Liposomes
,”
Adv. Drug Delivery Rev.
0169-409X,
40
(
1–2
), pp.
63
73
.
21.
Huang
,
S. K.
,
Mayhew
,
E.
,
Gilani
,
S.
,
Lasic
,
D. D.
,
Martin
,
F. J.
, and
Papahadjopoulos
,
D.
, 1992, “
Pharmacokinetics and Therapeutics of Sterically Stabilized Liposomes in Mice Bearing C-26 Colon Carcinoma
,”
Cancer Res.
0008-5472,
52
(
24
), pp.
6774
6781
.
22.
Unezaki
,
S.
,
Maruyama
,
K.
,
Ishida
,
O.
,
Suginaka
,
A.
,
Hosoda
,
J. -I.
, and
Iwatsuru
,
M.
, 1995, “
Enhanced Tumor Targeting and Improved Antitumor Activity of Doxorubicin by Long-Circulating Liposomes Containing Amphipathic Poly(Ethylene Glycol)
,”
Int. J. Pharm.
0378-5173,
126
(
1–2
), pp.
41
48
.
23.
Gabizon
,
A.
,
Chemla
,
M.
,
Tzemach
,
D.
,
Horowitz
,
A. T.
, and
Goren
,
D.
, 1996, “
Liposome Longevity and Stability in Circulation: Effects on the In Vivo Delivery to Tumors and Therapeutic Efficacy of Encapsulated Anthracyclines
,”
J. Drug Target.
1061-186X,
3
(
5
), pp.
391
398
.
24.
Chang
,
C. W.
,
Barber
,
L.
,
Ouyang
,
C.
,
Masin
,
D.
,
Bally
,
M. B.
, and
Madden
,
T. D.
, 1997, “
Plasma Clearance, Biodistribution and Therapeutic Properties of Mitoxantrone Encapsulated in Conventional and Sterically Stabilized Liposomes After Intravenous Administration in BDF1 Mice
,”
Br. J. Cancer
0007-0920,
72
(
2
), pp.
169
177
.
25.
Sadzuka
,
Y.
,
Hirotsu
,
S.
, and
Hirota
,
S.
, 1998, “
Effect of Liposomalization on the Antitumor Activity, Side-Effects and Tissue Distribution of CPT-11
,”
Cancer Lett.
0304-3835,
127
(
1–2
), pp.
99
106
.
26.
Lu
,
W. -L.
,
Qi
,
X. -R.
,
Zhang
,
Q.
,
Li
,
R. -Y.
,
Wang
,
G. -L.
,
Zhang
,
R. -J.
, and
Wei
,
S. -L.
, 2004, “
A Pegylated Liposomal Platform: Pharmacokinetics, Pharmacodynamics, and Toxicity in Mice Using Doxorubicin as a Model Drug
,”
J. Pharmacol. Sci.
,
95
(
3
), pp.
381
389
. 1347-8613
27.
Mayer
,
L. D.
,
Dougherty
,
G.
,
Harasym
,
T. O.
, and
Bally
,
M. B.
, 1997, “
The Role of Tumor-Associated Macrophages in the Delivery of Liposomal Doxorubicin to Solid Murine Fibrosarcoma Tumors
,”
J. Pharmacol. Exp. Ther.
0022-3565,
280
(
3
), pp.
1406
1414
.
28.
Parr
,
M. J.
,
Masin
,
D.
,
Cullis
,
P. R.
, and
Bally
,
M. B.
, 1997, “
Accumulation of Liposomal Lipid and Encapsulated Doxorubicin in Murine Lewis Lung Carcinoma: The Lack of Beneficial Effects by Coating Liposomes With Poly(Ethylene Glycol)
,”
J. Pharmacol. Exp. Ther.
0022-3565,
280
(
3
), pp.
1319
1327
.
29.
Hong
,
R. -L.
,
Huang
,
C. -J.
,
Tseng
,
Y. -L.
,
Pang
,
V. F.
,
Chen
,
S. -T.
,
Liu
,
J. -J.
, and
Chang
,
F. -H.
, 1999, “
Direct Comparison of Liposomal Doxorubicin With or Without Polyethylene Glycol Coating in C-26 Tumor-Bearing Mice: Is Surface Coating With Polyethylene Glycol Beneficial?
,”
Clin. Cancer Res.
1078-0432,
5
(
11
), pp.
3645
3652
.
30.
Drummond
,
D. C.
,
Meyer
,
O.
,
Hong
,
K.
,
Kirpotin
,
D. B.
, and
Papahadjopoulos
,
D.
, 1999, “
Optimizing Liposomes for Delivery of Chemotherapeutic Agents to Solid Tumors
,”
Pharmacol. Rev.
0031-6997,
51
(
4
), pp.
691
744
.
31.
Rezler
,
E. M.
,
Khan
,
D. R.
,
Lauer-Fields
,
J.
,
Cudic
,
M.
,
Baronas-Lowell
,
D.
, and
Fields
,
G. B.
, 2007, “
Targeted drug Delivery Utilizing Protein-Like Molecular Architecture
,”
J. Am. Chem. Soc.
0002-7863,
129
(
16
), pp.
4961
4972
.
32.
Foerg
,
C.
, and
Merkle
,
H. P.
, 2008, “
On the Biomedical Promise of Cell Penetrating Peptides: Limits Versus Prospects
,”
J. Pharm. Sci.
0022-3549,
97
(
1
), pp.
144
162
.
33.
Holm
,
T.
,
Netzereab
,
S.
,
Hansen
,
M.
,
Langel
,
Ü.
, and
Hällbrink
,
M.
, 2005, “
Uptake of Cell-Penetrating Peptides in Yeasts
,”
FEBS Lett.
0014-5793,
579
(
23
), pp.
5217
5222
.
34.
Elmquist
,
A.
,
Lindgren
,
M.
,
Bartfai
,
T.
, and
Langel
,
Ü.
, 2001, “
VE-Cadherin-Derived Cell-Penetrating Peptide, pVEC, With Carrier Functions
,”
Exp. Cell Res.
0014-4827,
269
(
2
), pp.
237
244
.
35.
Lindgren
,
M. E.
,
Hällbrink
,
M. M.
,
Elmquist
,
A. M.
, and
Langel
,
Ü.
, 2004, “
Passage of Cell-Penetrating Peptides Across a Human Epithelial Cell Layer In Vitro
,”
Biochem. J.
0264-6021,
377
, Part. 1, pp.
69
76
.
36.
Green
,
L. S.
,
Jellinek
,
D.
,
Bell
,
C.
,
Beebe
,
L. A.
,
Feistner
,
B. D.
,
Gill
,
S. C.
,
Jucker
,
F. M.
, and
Janjic
,
N.
, 1995, “
Nuclease-Resistant Nucleic Acid Ligands to Vascular Permeability Factor/Vascular Endothelial Growth Factor
,”
Chem. Biol.
1074-5521,
2
(
10
), pp.
683
695
.
37.
Hicke
,
B. J.
,
Watson
,
S. R.
,
Koenig
,
A.
,
Lynott
,
C. K.
,
Bargatze
,
R. F.
,
Chang
,
Y. F.
,
Ringquist
,
S.
,
Moon-McDermott
,
L.
,
Jennings
,
S.
,
Fitzwater
,
T.
,
Han
,
H. L.
,
Varki
,
N.
,
Albinana
,
I.
,
Willis
,
M. C.
,
Varki
,
A.
, and
Parma
,
D.
, 1996, “
DNA Aptamers Block L-Selectin Function In Vivo. Inhibition of Human Lymphocyte Trafficking in SCID Mice
,”
J. Clin. Invest.
0021-9738,
98
(
12
), pp.
2688
2692
.
38.
Willis
,
M. C.
,
Collins
,
B.
,
Zhang
,
T.
,
Green
,
L. S.
,
Sebesta
,
D. P.
,
Bell
,
C.
,
Kellogg
,
E.
,
Gill
,
S. C.
,
Magallanez
,
A.
,
Knauer
,
S.
,
Bendele
,
R. A.
,
Gill
,
P. S.
, and
Janjic
,
N.
, 1998, “
Liposome-Anchored Vascular Endothelial Growth Factor Aptamers
,”
Bioconjugate Chem.
1043-1802,
9
(
5
), pp.
573
582
.
39.
Farokhzad
,
O. C.
,
Jon
,
S.
,
Khademhosseini
,
A.
,
Tran
,
T. -N. T.
,
LaVan
,
D. A.
, and
Langer
,
R.
, 2004, “
Nanoparticle-Aptamer Bioconjugates: A New Approach for Targeting Prostate Cancer Cells
,”
Cancer Res.
0008-5472,
64
(
21
), pp.
7668
7672
.
40.
Harding
,
J. A.
,
Engbers
,
C. M.
,
Newman
,
M. S.
,
Goldstein
,
N. I.
, and
Zalipsky
,
S.
, 1997, “
Immunogenicity and Pharmacokinetic Attributes of Poly(Ethylene Glycol)-Grafted Immunoliposomes
,”
Biochim. Biophys. Acta
0006-3002,
1327
(
2
), pp.
181
192
.
41.
Andresen
,
T. L.
,
Jensen
,
S. S.
, and
Jorgensen
,
K.
, 2005, “
Advanced Strategies in Liposomal Cancer Therapy: Problems and Prospects of Active and Tumor Specific Drug Release
,”
Prog. Lipid Res.
0163-7827,
44
(
1
), pp.
68
97
.
42.
Barenholz
,
Y.
, 2001, “
Liposome Application: Problems and Prospects
,”
Curr. Opin. Colloid Interface Sci.
1359-0294,
6
(
1
), pp.
66
77
.
43.
Gerasimov
,
O. V.
,
Boomer
,
J. A.
,
Qualls
,
M. M.
, and
Thompson
,
D. H.
, 1999, “
Cytosolic Drug Delivery Using pH- and Light-Sensitive Liposomes
,”
Adv. Drug Delivery Rev.
0169-409X,
38
(
3
), pp.
317
338
.
44.
van Osdol
,
W.
,
Fujimori
,
K.
, and
Weinstein
,
J. N.
, 1991, “
An Analysis of Monoclonal Antibody Distribution in Microscopic Tumor Nodules: Consequences of a “Binding Site Barrier”
,”
Cancer Res.
0008-5472,
51
(
18
), pp.
4776
4784
.
45.
Emanuel
,
N.
,
Kedar
,
E.
,
Bolotin
,
E. M.
,
Smorodinsky
,
N. I.
, and
Barenholz
,
Y.
, 1996, “
Targeted Delivery of Doxorubicin Via Sterically Stabilized Immunoliposomes: Pharmacokinetics and Biodistribution in Tumor-Bearing Mice
,”
Pharm. Res.
0724-8741,
13
(
6
), pp.
861
868
.
46.
Jain
,
R. K.
, 2005, “
Normalization of Tumor Vasculature: An Emerging Concept in Antiangiogenic Therapy
,”
Science
0036-8075,
307
(
5706
), pp.
58
62
.
47.
Torchilin
,
V. P.
, and
Lukyanov
,
A. N.
, 2003, “
Peptide and Protein Drug Delivery to and Into Tumors: Challenges and Solutions
,”
Drug Discovery Today
1359-6446,
8
(
6
), pp.
259
266
.
48.
Safra
,
T.
,
Muggia
,
F.
,
Jeffers
,
S.
,
Tsao-Wei
,
D. D.
,
Groshen
,
S.
,
Lyass
,
O.
,
Henderson
,
R.
,
Berry
,
G.
, and
Gabizon
,
A.
, 2000, “
Pegylated Liposomal Doxorubicin (Doxil): Reduced Clinical Cardiotoxicity in Patients Reaching or Exceeding Cumulative Doses of 500 mg/m2
,”
Ann. Oncol.
0923-7534,
11
(
8
), pp.
1029
1033
.
49.
Tu
,
R. S.
, and
Tirrell
,
M.
, 2004, “
Bottom-Up Design of Biomimetic Assemblies
,”
Adv. Drug Delivery Rev.
0169-409X,
56
(
11
), pp.
1537
1563
.
50.
Banerjee
,
R.
, 2001, “
Liposomes: Applications in Medicine
,”
J. Biomater. Appl.
0885-3282,
16
(
1
), pp.
3
21
.
51.
Klibanov
,
A. L.
,
Maruyama
,
K.
,
Torchilin
,
V. P.
, and
Huang
,
L.
, 1990, “
Amphipathic Polyethyleneglycols Effectively Prolong the Circulation Time of Liposomes
,”
FEBS Lett.
0014-5793,
268
(
1
), pp.
235
237
.
52.
Woodle
,
M. C.
, and
Lasic
,
D. D.
, 1992, “
Sterically Stabilized Liposomes
,”
Biochim. Biophys. Acta
0006-3002,
1113
(
2
), pp.
171
199
.
53.
Allen
,
T. M.
,
Hansen
,
C.
,
Martin
,
F.
,
Redemann
,
C.
, and
Yau-Young
,
A.
, 1991, “
Liposomes Containing Synthetic Lipid Derivatives of Poly(Ethylene Glycol) Show Prolonged Circulation Half-Lives In Vivo
,”
Biochim. Biophys. Acta
0006-3002,
1066
(
1
), pp.
29
36
.
54.
Tu
,
R. S.
,
Mohanty
,
K.
, and
Tirrell
,
M. V.
, 2004, “
Liposomal Targeting Through Peptide-Amphiphile Functionalization
,”
Am. Pharm. Rev.
,
7
(
2
), pp.
36
41
.
55.
Maeda
,
N.
,
Takeuchi
,
Y.
,
Takada
,
M.
,
Sadzuka
,
Y.
,
Namba
,
Y.
, and
Oku
,
N.
, 2004, “
Anti-Neovascular Therapy by Use of Tumor Neovasculature-Targeted Long-Circulating Liposome
,”
J. Controlled Release
0168-3659,
100
(
1
), pp.
41
52
.
56.
Kokkoli
,
E.
,
Kasinskas
,
R. W.
,
Mardilovich
,
A.
, and
Garg
,
A.
, 2005, “
Fractalkine Targeting With a Receptor-Mimicking Peptide-Amphiphile
,”
Biomacromolecules
1525-7797,
6
(
3
), pp.
1272
1279
.
57.
Lestini
,
B. J.
,
Sagnella
,
S. M.
,
Xu
,
Z.
,
Shive
,
M. S.
,
Richter
,
N. J.
,
Jayaseharan
,
J.
,
Case
,
A. J.
,
Kottke-Marchant
,
K.
,
Anderson
,
J. M.
, and
Marchant
,
R. E.
, 2002, “
Surface Modification of Liposomes for Selective Cell Targeting in Cardiovascular Drug Delivery
,”
J. Controlled Release
0168-3659,
78
(
1–3
), pp.
235
247
.
58.
Huang
,
G.
,
Zhou
,
Z.
,
Srinivasan
,
R.
,
Penn
,
M. S.
,
Kottke-Marchant
,
K.
,
Marchant
,
R. E.
, and
Gupta
,
A. S.
, 2008, “
Affinity Manipulation of Surface-Conjugated RGD Peptide to Modulate Binding of Liposomes to Activated Platelets
,”
Biomaterials
0142-9612,
29
(
11
), pp.
1676
1685
.
59.
Oku
,
N.
,
Tokudome
,
Y.
,
Koike
,
C.
,
Nishikawa
,
N.
,
Mori
,
H.
,
Saiki
,
I.
, and
Okada
,
S.
, 1996, “
Liposomal ARG-GLY-ASP Analogs Effectively Inhibit Metastatic B16 Melanoma Colonization in Murine Lungs
,”
Life Sci.
0024-3205,
58
(
24
), pp.
2263
2270
.
60.
Kurohane
,
K.
,
Namba
,
Y.
, and
Oku
,
N.
, 2000, “
Liposomes Modified With a Synthetic Arg-Gly-Asp Mimetic Inhibit Lung Metastasis of B16BL6 Melanoma Cells
,”
Life Sci.
0024-3205,
68
(
3
), pp.
273
281
.
61.
Xiong
,
X. -B.
,
Huang
,
Y.
,
Lu
,
W. -L.
,
Zhang
,
X.
,
Zhang
,
H.
,
Nagai
,
T.
, and
Zhang
,
Q.
, 2005, “
Enhanced Intracellular Delivery and Improved Antitumor Efficacy of Doxorubicin by Sterically Stabilized Liposomes Modified With a Synthetic RGD Mimetic
,”
J. Controlled Release
0168-3659,
107
(
2
), pp.
262
275
.
62.
Fahr
,
A.
,
Muller
,
K.
,
Nahde
,
T.
,
Muller
,
R.
, and
Brusselbach
,
S.
, 2002, “
A New Colloidal Lipidic System for Gene Therapy
,”
J. Liposome Res.
,
12
(
1–2
), pp.
37
44
. 0898-2104
63.
Garg
,
A.
,
Tisdale
,
A. W.
,
Haidari
,
E.
, and
Kokkoli
,
E.
, 2009, “
Targeting Colon Cancer Cells Using PEGylated Liposomes Modified With a Fibronectin-Mimetic Peptide
,”
Int. J. Pharm.
0378-5173,
366
(
1–2
), pp.
201
210
.
64.
Demirgöz
,
D.
,
Garg
,
A.
, and
Kokkoli
,
E.
, 2008, “
PR_b Targeted PEGylated liposomes for Prostrate Cancer Therapy
,”
Langmuir
0743-7463,
24
(
23
), pp.
13518
13524
.
65.
Schiffelers
,
R. M.
,
Koning
,
G. A.
,
ten Hagen
,
T. L. M.
,
Fens
,
M.
,
Schraa
,
A. J.
,
Janssen
,
A.
,
Kok
,
R. J.
,
Molema
,
G.
, and
Storm
,
G.
, 2003, “
Anti-Tumor Efficacy of Tumor Vasculature-Targeted Liposomal Doxorubicin
,”
J. Controlled Release
0168-3659,
91
(
1–2
), pp.
115
122
.
66.
Koning
,
G. A.
,
Fretz
,
M. M.
,
Woroniecka
,
U.
,
Storm
,
G.
, and
Krijger
,
G. C.
, 2004, “
Targeting Liposomes to Tumor Endothelial Cells for Neutron Capture Therapy
,”
Appl. Radiat. Isot.
0969-8043,
61
(
5
), pp.
963
967
.
67.
Holig
,
P.
,
Bach
,
M.
,
Volkel
,
T.
,
Nahde
,
T.
,
Hoffmann
,
S.
,
Muller
,
R.
, and
Kontermann
,
R. E.
, 2004, “
Novel RGD Lipopeptides for the Targeting of Liposomes to Integrin-Expressing Endothelial and Melanoma Cells
,”
Protein Eng. Des. Sel.
,
17
(
5
), pp.
433
441
. 1741-0126
68.
Janssen
,
A.
,
Schiffelers
,
R. M.
,
ten Hagen
,
T. L. M.
,
Koning
,
G. A.
,
Schraa
,
A. J.
,
Kok
,
R. J.
,
Storm
,
G.
, and
Molema
,
G.
, 2003, “
Peptide-Targeted PEG-Liposomes in Anti-Angiogenic Therapy
,”
Int. J. Pharm.
0378-5173,
254
(
1
), pp.
55
58
.
69.
Temming
,
K.
,
Schiffelers
,
R. M.
,
Molema
,
G.
, and
Kok
,
R. J.
, 2005, “
RGD-Based Strategies for Selective Delivery of Therapeutics and Imaging Agents to the Tumour Vasculature
,”
Drug Resist. Updat.
,
8
(
6
), pp.
381
402
. 1368-7646
70.
Mulder
,
W. J. M.
,
van der Schaft
,
D. W. J.
,
Hautvast
,
P. A. I.
,
Strijkers
,
G. J.
,
Koning
,
G. A.
,
Storm
,
G.
,
Mayo
,
K. H.
,
Griffioen
,
A. W.
, and
Nicolay
,
K.
, 2007, “
Early In Vivo Assessment of Angiostatic Therapy Efficacy by Molecular MRI
,”
FASEB J.
0892-6638,
21
(
2
), pp.
378
383
.
71.
Scott
,
E. S.
,
Wiseman
,
J. W.
,
Evans
,
M. J.
, and
Colledge
,
W. H.
, 2001, “
Enhanced Gene Delivery to Human Airway Epithelial Cells Using an Integrin-Targeting Lipoplex
,”
J. Gene Med.
,
3
(
2
), pp.
125
134
. 1099-498X
72.
Qin
,
J.
,
Chen
,
D.
,
Hu
,
H.
,
Cui
,
Q.
,
Qiao
,
M.
, and
Chen
,
B. Y.
, 2007, “
Surface Modification of RGD-Liposomes for Selective Drug Delivery to Monocytes/Neutrophils in Brain
,”
Chem. Pharm. Bull. (Tokyo)
0009-2363,
55
(
8
), pp.
1192
1197
.
73.
Lee
,
T. Y.
,
Lin
,
C. T.
,
Kuo
,
S. Y.
,
Chang
,
D. K.
, and
Wu
,
H. C.
, 2007, “
Peptide-Mediated Targeting to Tumor Blood Vessels of Lung Cancer for Drug Delivery
,”
Cancer Res.
0008-5472,
67
, pp.
10958
10965
.
74.
Kratz
,
F.
,
Drevs
,
J.
,
Bing
,
G.
,
Stockmar
,
C.
,
Scheuermann
,
K.
,
Lazar
,
P.
, and
Unger
,
C.
, 2001, “
Development and In Vitro Efficacy of Novel MMP2 and MMP9 Specific Doxorubicin Albumin Conjugates
,”
Bioorg. Med. Chem. Lett.
0960-894X,
11
(
15
), pp.
2001
2006
.
75.
Mansour
,
A. M.
,
Drevs
,
J.
,
Esser
,
N.
,
Hamada
,
F. M.
,
Badary
,
O. A.
,
Unger
,
C.
,
Fichtner
,
I.
, and
Kratz
,
F.
, 2003, “
A New Approach for the Treatment of Malignant Melanoma: Enhanced Antitumor Efficacy of an Albumin-Binding Doxorubicin Prodrug That is Cleaved by Matrix Metalloproteinase 2
,”
Cancer Res.
0008-5472,
63
(
14
), pp.
4062
4066
.
76.
Terada
,
T.
,
Mizobata
,
M.
,
Kawakami
,
S.
,
Yamashita
,
F.
, and
Hashida
,
M.
, 2007, “
Optimization of Tumor-Selective Targeting by Basic Fibroblast Growth Factor-Binding Peptide Grafted PEGylated Liposomes
,”
J. Controlled Release
0168-3659,
119
(
3
), pp.
262
270
.
77.
Dagar
,
S.
,
Sekosan
,
M.
,
Lee
,
B. S.
,
Rubinstein
,
I.
, and
Onyuksel
,
H.
, 2001, “
VIP Receptors as Molecular Targets of Breast Cancer: Implications for Targeted Imaging and Drug Delivery
,”
J. Controlled Release
0168-3659,
74
(
1–3
), pp.
129
134
.
78.
Dagar
,
S.
,
Krishnadas
,
A.
,
Rubinstein
,
I.
,
Blend
,
M. J.
, and
Onyuksel
,
H.
, 2003, “
VIP Grafted Sterically Stabilized Liposomes for Targeted Imaging of Breast Cancer: In Vivo Studies
,”
J. Controlled Release
0168-3659,
91
(
1–2
), pp.
123
133
.
79.
Moreira
,
J. N.
, and
Gaspar
,
R.
, 2004, “
Antagonist G-Mediated Targeting and Cytotoxicity of Liposomal Doxorubicin in NCl-H82 Variant Small Cell Lung Cancer
,”
Braz. J. Med. Biol. Res.
0100-879X,
37
(
8
), pp.
1185
1192
.
80.
Ogawa
,
Y.
,
Kawahara
,
H.
,
Yagi
,
N.
,
Kodaka
,
M.
,
Tomohiro
,
T.
,
Okada
,
T.
,
Konakahara
,
T.
, and
Okuno
,
H.
, 1999, “
Synthesis of a Novel Lipopeptide With Alpha-Melanocyte-Stimulating Hormone Peptide Ligand and Its Effect on Liposome Stability
,”
Lipids
0024-4201,
34
(
4
), pp.
387
394
.
81.
Lopez-Barcons
,
L. A.
,
Polo
,
D.
,
Reig
,
F.
, and
Fabra
,
A.
, 2004, “
Pentapeptide YIGSR-Mediated HT-1080 Fibrosarcoma Cells Targeting of Adriamycin Encapsulated in Sterically Stabilized Liposomes
,”
J. Biomed. Mater. Res. Part A
1549-3296,
69A
(
1
), pp.
155
163
.
82.
Pastorino
,
F.
,
Brignole
,
C.
,
Marimpietri
,
D.
,
Cilli
,
M.
,
Gambini
,
C.
,
Ribatti
,
D.
,
Longhi
,
R.
,
Allen
,
T. M.
,
Corti
,
A.
, and
Ponzoni
,
M.
, 2003, “
Vascular Damage and Anti-Angiogenic Effects of Tumor Vessel-Targeted Liposomal Chemotherapy
,”
Cancer Res.
0008-5472,
63
(
21
), pp.
7400
7409
.
83.
Maeda
,
N.
,
Miyazawa
,
S.
,
Shimizu
,
K.
,
Asai
,
T.
,
Yonezawa
,
S.
,
Kitazawa
,
S.
,
Namba
,
Y.
,
Tsukada
,
H.
, and
Oku
,
N.
, 2006, “
Enhancement of Anticancer Activity in Antineovascular Therapy is Based on the Intratumoral Distribution of the Active Targeting Carrier for Anticancer Drugs
,”
Biol. Pharm. Bull.
0918-6158,
29
(
9
), pp.
1936
1940
.
84.
Jaafari
,
M. R.
, and
Foldvari
,
M.
, 1999, “
P-o Protein Mediated Targeting of Liposomes to Melanoma Cells With High Level of ICAM-1 Expression
,”
J. Drug Target.
1061-186X,
7
(
2
), pp.
101
112
.
85.
Kale
,
A. A.
, and
Torchilin
,
V. P.
, 2007, “
“Smart” Drug Carriers: PEGylated TATp-Modified pH-Sensitive Liposomes
,”
J. Liposome Res.
,
17
(
3–4
), pp.
197
203
. 0898-2104
86.
Torchilin
,
V. P.
,
Levchenko
,
T. S.
,
Rammohan
,
R.
,
Volodina
,
N.
,
Papahadjopoulos-Sternberg
,
B.
, and
D’Souza
,
G. G. M.
, 2003, “
Cell Transfection In Vitro and In Vivo With Nontoxic TAT Peptide-Liposome-DNA Complexes
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
100
(
4
), pp.
1972
1977
.
87.
Tseng
,
Y. L.
,
Liu
,
J. J.
, and
Hong
,
R. L.
, 2002, “
Translocation of Liposomes Into Cancer Cells by Cell-Penetrating Peptides Penetratin and TAT: A Kinetic and Efficacy Study
,”
Mol. Pharm.
,
62
(
4
), pp.
864
872
. 1543-8384
88.
Marty
,
C.
,
Meylan
,
C.
,
Schott
,
H.
,
Ballmer-Hofer
,
K.
, and
Schwendener
,
R. A.
, 2004, “
Enhanced Heparan Sulfate Proteoglycan-Mediated Uptake of Cell-Penetrating Peptide-Modified Liposomes
,”
Cell. Mol. Life Sci.
1420-682X,
61
(
14
), pp.
1785
1794
.
89.
Lu
,
J.
,
Jeon
,
E.
,
Lee
,
B. -S.
,
Onyuksel
,
H.
, and
Wang
,
Z. J.
, 2006, “
Targeted Drug Delivery Crossing Cytoplasmic Membranes of Intended Cells Via Ligand-Grafted Sterically Stabilized Liposomes
,”
J. Controlled Release
0168-3659,
110
(
3
), pp.
505
513
.
90.
Mudhakir
,
D.
,
Akita
,
H.
,
Tan
,
E.
, and
Harashima
,
H.
, 2008, “
A Novel IRQ Ligand-Modified Nano-Carrier Targeted to a Unique Pathway of Caveolar Endocytic Pathway
,”
J. Controlled Release
0168-3659,
125
(
2
), pp.
164
173
.
91.
Sauer
,
I.
,
Dunay
,
I. R.
,
Weisgraber
,
K.
,
Bienert
,
M.
, and
Dathe
,
M.
, 2005, “
An Apolipoprotein E-Derived Peptide Mediates Uptake of Sterically Stabilized Liposomes Into Brain Capillary Endothelial Cells
,”
Biochemistry
0006-2960,
44
(
6
), pp.
2021
2029
.
92.
Borden
,
M. A.
,
Zhang
,
H.
,
Gillies
,
R. J.
,
Dayton
,
P. A.
, and
Ferrara
,
K. W.
, 2008, “
A Stimulus-Responsive Contrast Agent for Ultrasound Molecular Imaging
,”
Biomaterials
0142-9612,
29
(
5
), pp.
597
606
.
93.
Sen Gupta
,
A.
,
Huang
,
G.
,
Lestini
,
B. J.
,
Sagnella
,
S.
,
Kottke-Marchant
,
K.
, and
Marchant
,
R. E.
, 2005, “
RGD-Modified Liposomes Targeted to Activated Platelets as a Potential Vascular Drug Delivery System
,”
Thromb. Haemostasis
0340-6245,
93
(
1
), pp.
106
114
.
94.
Lee
,
G.
,
Chan
,
W.
,
Hurle
,
M. R.
,
Desjarlais
,
R. L.
,
Watson
,
F.
,
Sathe
,
G. M.
, and
Wetzel
,
R.
, 1993, “
Strong Inhibition of Fibrinogen Binding to Platelet Receptor Alpha-IIb-Beta-3 by RGD Sequences Installed Into a Presentation Scaffold
,”
Protein Eng.
0269-2139,
6
(
7
), pp.
745
754
.
95.
Mousa
,
S. A.
,
Bozarth
,
J. M.
,
Naik
,
U. P.
, and
Slee
,
A.
, 2001, “
Platelet GPIIb/IIIa Binding Characteristics of Small Molecule RGD Mimetic: Distinct Binding Profile for Roxifiban
,”
Br. J. Pharmacol.
0007-1188,
133
(
3
), pp.
331
336
.
96.
Cheng
,
S.
,
Craig
,
W. S.
,
Mullen
,
D.
,
Tschopp
,
J. F.
,
Dixon
,
D.
, and
Pierschbacher
,
M. D.
, 1994, “
Design and Synthesis of Novel Cyclic RGC-Containing Peptides as Highly Potent and Selective Integrin Alpha(IIb)Beta(3) Antagonists
,”
J. Med. Chem.
0022-2623,
37
(
1
), pp.
1
8
.
97.
Dubey
,
P. K.
,
Mishra
,
V.
,
Jain
,
S.
,
Mahor
,
S.
, and
Vyas
,
S. P.
, 2004, “
Liposomes Modified With Cyclic RGD Peptide for Tumor Targeting
,”
J. Drug Target.
1061-186X,
12
(
5
), pp.
257
264
.
98.
Du
,
S. -L.
,
Pan
,
H.
,
Lu
,
W. -Y.
,
Wang
,
J.
,
Wu
,
J.
, and
Wang
,
J. -Y.
, 2007, “
Cyclic Arg-Gly-Asp Peptide-Labeled Liposomes for Targeting Drug Therapy of Hepatic Fibrosis in Rats
,”
J. Pharmacol. Exp. Ther.
0022-3565,
322
(
2
), pp.
560
568
.
99.
Biesalski
,
M.
,
Tu
,
R.
, and
Tirrell
,
M. V.
, 2005, “
Polymerized Vesicles Containing Molecular Recognition Sites
,”
Langmuir
0743-7463,
21
(
13
), pp.
5663
5666
.
100.
Ruoslahti
,
E.
, 1996, “
RGD and Other Recognition Sequences for Integrins
,”
Annu. Rev. Cell Dev. Biol.
1081-0706,
12
, pp.
697
715
.
101.
Ruoslahti
,
E.
, 1992, “
Control of Cell Motility and Tumor Invasion by Extracellular-Matrix Interactions
,”
Br. J. Cancer
0007-0920,
66
(
2
), pp.
239
242
.
102.
Sheu
,
J. R.
,
Lin
,
C. H.
,
Chung
,
J. L.
,
Teng
,
C. M.
, and
Huang
,
T. F.
, 1992, “
Triflavin, and Arg-Gly-Asp-Containing Antiplatelet Peptide Inhibits Cell-Substatum Adhesion and Melanoma Cell-Induced Lung Colonization
,”
Jpn. J. Cancer Res.
0910-5050,
83
(
8
), pp.
885
893
.
103.
Soszka
,
T.
,
Knudsen
,
K. A.
,
Beviglia
,
L.
,
Rossi
,
C.
,
Poggi
,
A.
, and
Niewiarowski
,
S.
, 1991, “
Inhibition of Murin Melanoma Cell-Matrix Adhesion and Experimental Metastasis by Albolabrin, an RGD-Containing Peptide Isolated From the Venom of Trimeresurus Albolabris
,”
Exp. Cell Res.
0014-4827,
196
(
1
), pp.
6
12
.
104.
Saiki
,
I.
,
Koike
,
C.
,
Obata
,
A.
,
Fujii
,
H.
,
Murata
,
J.
,
Kiso
,
M.
,
Hasegawa
,
A.
,
Komazawa
,
H.
,
Tsukada
,
H.
,
Azuma
,
I.
,
Okada
,
S.
, and
Oku
,
N.
, 1996, “
Functional Role of Sialyl Lewis X and Fibronectin-Derived RGDS Peptide Analogue on Tumor-Cell Arrest in Lungs Followed by Extravasation
,”
Int. J. Cancer
0020-7136,
65
(
6
), pp.
833
839
.
105.
Saiki
,
I.
,
Yoneda
,
J.
,
Igarashi
,
Y.
,
Aoki
,
M.
,
Kusunose
,
N.
,
Ono
,
K. I.
, and
Azuma
,
I.
, 1993, “
Antimetastatic Activity of Polymeric RGDT Peptides Conjugated With Poly(Ethylene Glycol)
,”
Jpn. J. Cancer Res.
0910-5050,
84
(
5
), pp.
558
565
.
106.
Humphries
,
M. J.
,
Yamada
,
K. M.
, and
Olden
,
K.
, 1988, “
Investigation of Biological Effects of Anit-Cell Adhesive Synthetic Peptides That Inhibit Experimental Metastasis of B16-F10 Murine Melanoma-Cells
,”
J. Clin. Invest.
0021-9738,
81
(
3
), pp.
782
790
.
107.
Kumagai
,
H.
,
Tajima
,
M.
,
Ueno
,
Y.
,
Yuhko
,
G. H.
, and
Ohba
,
M.
, 1991, “
Effect of Cyclic RGD Peptide on Cell-Adhesion and Tumor-Metastasis
,”
Biochem. Biophys. Res. Commun.
0006-291X,
177
(
1
), pp.
74
82
.
108.
Komazawa
,
H.
,
Saiki
,
I.
,
Igarashi
,
Y.
,
Azuma
,
I.
,
Tokura
,
S.
,
Kojima
,
M.
,
Orikasa
,
A.
,
Ono
,
M.
, and
Itoh
,
I.
, 1993, “
The Conjugation of RGDS Peptide With CM-Chitin Augments the Peptide-Mediated Inhibition of Tumor-Metastasis
,”
Carbohydr. Polym.
0144-8617,
21
(
4
), pp.
299
307
.
109.
Greenspoon
,
N.
,
Hershkoviz
,
R.
,
Alon
,
R.
,
Varon
,
D.
,
Shenkman
,
B.
,
Marx
,
G.
,
Federman
,
S.
,
Kapustina
,
G.
, and
Lider
,
O.
, 1993, “
Structural-Analysis of Integrin Recognition and the Inhibition of Integrin-Mediated Cell Functions by Novel Nonpeptidic Surrogates of the Arg-Gly-Asp Sequence
,”
Biochemistry
0006-2960,
32
(
4
), pp.
1001
1008
.
110.
Hardan
,
I.
,
Weiss
,
L.
,
Hershkoviz
,
R.
,
Greenspoon
,
N.
,
Alon
,
R.
,
Cahalon
,
L.
,
Reich
,
S.
,
Slavin
,
S.
, and
Lider
,
O.
, 1993, “
Inhibition of Metastatic Cell Colonization in Murine Lungs and Tumor-Induced Morbidity by Nonpeptidic Arg-Gly-Asp Mimetics
,”
Int. J. Cancer
0020-7136,
55
(
6
), pp.
1023
1028
.
111.
Fujii
,
H.
,
Nishikawa
,
N.
,
Komazawa
,
H.
,
Orikasa
,
A.
,
Ono
,
M.
,
Itoh
,
I.
,
Murata
,
J.
,
Azuma
,
I.
, and
Saiki
,
I.
, 1996, “
Inhibition of Tumor Invasion and Metastasis by Peptidic Mimetics of Arg-Gly Asp (RGD) Derived From the Cell Recognition Site of Fibronectin
,”
Oncol. Res.
0965-0407,
8
(
9
), pp.
333
342
.
112.
Ito
,
A.
,
Akiyama
,
H.
,
Kawabe
,
Y.
, and
Kamihira
,
M.
, 2007, “
Magnetic Force-Based Cell Patterning Using Arg-Gly-Asp (RGD) Peptide-Conjugated Magnetite Cationic Liposomes
,”
J. Biosci. Bioeng.
1389-1723,
104
(
4
), pp.
288
293
.
113.
Akiyama
,
S. K.
,
Aota
,
S.
, and
Yamada
,
K. M.
, 1995, “
Function and Receptor Specificity of a Minimal 20-Kilodalton Cell Adhesive Fragment of Fibronectin
,”
Cell Adhes Commun.
1061-5385,
3
(
1
), pp.
13
25
.
114.
Yang
,
X. B.
,
Roach
,
H. I.
,
Clarke
,
N. M. P.
,
Howdle
,
S. M.
,
Quirk
,
R.
,
Shakesheff
,
K. M.
, and
Oreffo
,
R. O. C.
, 2001, “
Human Osteoprogenitor Growth and Differentiation on Synthetic Biodegradable Structures After Surface Modification
,”
Bone
,
29
(
6
), pp.
523
531
. 8756-3282
115.
Garcia
,
A. J.
,
Schwarzbauer
,
J. E.
, and
Boettiger
,
D.
, 2002, “
Distinct Activation States of Alpha5beta1 Integrin Show Differential Binding to RGD and Synergy Domains of Fibronectin
,”
Biochemistry
0006-2960,
41
(
29
), pp.
9063
9069
.
116.
Aota
,
S.
,
Nomizu
,
M.
, and
Yamada
,
K.
, 1994, “
The Short Amino Acid Sequence Pro-His-Ser-Arg-Asn in Human Fibronectin Enhances Cell-Adhesive Function
,”
J. Biol. Chem.
0021-9258,
269
(
40
), pp.
24756
24761
.
117.
Kokkoli
,
E.
,
Ochsenhirt
,
S. E.
, and
Tirrell
,
M.
, 2004, “
Collective and Single-Molecule Interactions of Alpha(5)beta(1) Integrins
,”
Langmuir
0743-7463,
20
(
6
), pp.
2397
2404
.
118.
Aucoin
,
L.
,
Griffith
,
C. M.
,
Pleizier
,
G.
,
Deslandes
,
Y.
, and
Sheardown
,
H.
, 2002, “
Interactions of Corneal Epithelial Cells and Surfaces Modified With Cell Adhesion Peptide Combinations
,”
J. Biomaterials Sci., Polym. Ed.
,
13
(
4
), pp.
447
462
.
119.
Kao
,
W. J.
, 1999, “
Evaluation of Protein-Modulated Macrophage Behavior on Biomaterials: Designing Biomimetic Materials for Cellular Engineering
,”
Biomaterials
0142-9612,
20
(
23–24
), pp.
2213
2221
.
120.
Kim
,
T. I.
,
Jang
,
J. H.
,
Lee
,
Y. M.
,
Ryu
,
I. C.
,
Chung
,
C. P.
,
Han
,
S. B.
,
Choi
,
S. M.
, and
Ku
,
Y.
, 2002, “
Design and Biological Activity of Synthetic Oligopeptides With Pro-His-Ser-Arg-Asn (PHSRN) and Arg-Gly-Asp (RGD) Motifs for Human Osteoblast-Like Cell (MG-63) Adhesion
,”
Biotechnol. Lett.
0141-5492,
24
(
24
), pp.
2029
2033
.
121.
Benoit
,
D. S. W.
, and
Anseth
,
K. S.
, 2005, “
The Effect on Osteoblast Function of Colocalized RGD and PHSRN Epitopes on PEG Surfaces
,”
Biomaterials
0142-9612,
26
(
25
), pp.
5209
5220
.
122.
Petrie
,
T. A.
,
Capadona
,
J. R.
,
Reyes
,
C. D.
, and
Garcia
,
A. J.
, 2006, “
Integrin Specificity and Enhanced Cellular Activities Associated With Surfaces Presenting a Recombinant Fibronectin Fragment Compared to RGD Supports
,”
Biomaterials
0142-9612,
27
(
31
), pp.
5459
5470
.
123.
Mardilovich
,
A.
, and
Kokkoli
,
E.
, 2004, “
Biomimetic Peptide-Amphiphiles for Functional Biomaterials: The Role of GRGDSP and PHSRN
,”
Biomacromolecules
1525-7797,
5
(
3
), pp.
950
957
.
124.
Mardilovich
,
A.
,
Craig
,
J. A.
,
McCammon
,
M. Q.
,
Garg
,
A.
, and
Kokkoli
,
E.
, 2006, “
Design of a Novel Fibronectin-Mimetic Peptide-Amphiphile for Functionalized Biomaterials
,”
Langmuir
0743-7463,
22
(
7
), pp.
3259
3264
.
125.
Craig
,
J. A.
,
Rexeisen
,
E. L.
,
Mardilovich
,
A.
,
Shroff
,
K.
, and
Kokkoli
,
E.
, 2008, “
Effect of Linker and Spacer on the Design of a Fibronectin Mimetic Peptode Evaluated Via Cell Studies and AFM Adhesion Forces
,”
Langmuir
0743-7463,
24
(
18
), pp.
10282
10292
.
126.
Kokkoli
,
E.
,
Mardilovich
,
A.
,
Wedekind
,
A.
,
Rexeisen
,
E. L.
,
Garg
,
A.
, and
Craig
,
J. A.
, 2006, “
Self-Assembly and Applications of Biomimetic and Bioactive Peptide-Amphiphiles
,”
Soft Matter
1744-683X,
2
(
12
), pp.
1015
1024
.
127.
Mardilovich
,
A.
, and
Kokkoli
,
E.
, 2005, “
Patterned Biomimetic Membranes: Effect of Concentration and pH
,”
Langmuir
0743-7463,
21
(
16
), pp.
7468
7475
.
128.
Terada
,
T.
,
Iwai
,
M.
,
Kawakami
,
S.
,
Yamashita
,
F.
, and
Hashida
,
M.
, 2006, “
Novel PEG-Matrix Metalloproteinase-2 Cleavable Peptide-Lipid Containing Galactosylated Liposomes for Hepatocellular Carcinoma-Selective Targeting
,”
J. Controlled Release
0168-3659,
111
(
3
), pp.
333
342
.
129.
Curran
,
S.
, and
Murray
,
G. I.
, 1999, “
Matrix Metalloproteinases in Tumour Invasion and Metastasis
,”
J. Pathol.
0022-3417,
189
(
3
), pp.
300
308
.
130.
Hofmann
,
U. B.
,
Westphal
,
J. R.
,
Waas
,
E. T.
,
Zendman
,
A. J. W.
,
Cornelissen
,
I. M. H. A.
,
Ruiter
,
D. J.
, and
v Muijen
,
G. N. P.
, 1999, “
Matrix Metalloproteinases in Human Melanoma Cell Lines and Xenografts: Increased Expression of Activated Matrix Metalloproteinase-2 (MMP-2) Correlates With Melanoma Progression
,”
Br. J. Cancer
0007-0920,
81
(
5
), pp.
774
782
.
131.
Joo-Hyon
,
K.
,
Tae-Han
,
K.
,
Jin-Wook
,
J.
,
Yoon-Jung
,
J.
,
Kyung-Hwa
,
L.
, and
Seung-Taek
,
L.
, 2001, “
Analysis of Matrix Metalloproteinase mRNAs Expressed in Hepatocellular Carcinoma Cell Lines
,”
Mol. Cell
1097-2765,
12
(
1
), pp.
32
40
.
132.
Kawakami
,
S.
,
Munakata
,
C.
,
Fumoto
,
S.
,
Yamashita
,
F.
, and
Hashida
,
M.
, 2000, “
Targeted Delivery of Prostaglandin E1 to Hepatocytes Using Galactosylated Liposomes
,”
J. Drug Target.
1061-186X,
8
(
3
), pp.
137
142
.
133.
Kawakami
,
S.
,
Munakata
,
C.
,
Fumoto
,
S.
,
Yamashita
,
F.
, and
Hashida
,
M.
, 2001, “
Novel Galactosylated Liposomes for Hepatocyte-Selective Targeting of Lipophilic Drugs
,”
J. Pharm. Sci.
0022-3549,
90
(
2
), pp.
105
113
.
134.
Hattori
,
Y.
,
Kawakami
,
S.
,
Yamashita
,
F.
, and
Hashida
,
M.
, 2000, “
Controlled Biodistribution of Galactosylated Liposomes and Incorporated Probucol in Hepatocyte-Selective Drug Targeting
,”
J. Controlled Release
0168-3659,
69
(
3
), pp.
369
377
.
135.
Netzel-Arnett
,
S.
,
Sang
,
Q. X.
,
Moore
,
W. G. I.
,
Navre
,
M.
,
Birkedal-Hansen
,
H.
, and
Van Wart
,
H. E.
, 1993, “
Comparative Sequence Specificities of Human 72- and 92-kDa Gelatinases (Type IV Collagenases) and PUMP (Matrilysin)
,”
Biochemistry
0006-2960,
32
(
25
), pp.
6427
6432
.
136.
Danielsen
,
T.
, and
Rofstad
,
E. K.
, 1998, “
VEGF, bFGF and EGF in the Angiogenesis of Human Melanoma Xenografts
,”
Int. J. Cancer
0020-7136,
76
(
6
), pp.
836
841
.
137.
Kwabi-Addo
,
B.
,
Ozen
,
M.
, and
Ittmann
,
M.
, 2004, “
The Role of Fibroblast Growth Factors and Their Receptors in Prostate Cancer
,”
Endocr. Relat. Cancer
,
11
(
4
), pp.
709
724
. 1351-0088
138.
Terada
,
T.
,
Mizobata
,
M.
,
Kawakami
,
S.
,
Yabe
,
Y.
,
Yamashita
,
F.
, and
Hashida
,
M.
, 2006, “
Basic Fibroblast Growth Factor-Binding Peptide as a Novel Targeting Ligand of Drug Carrier to Tumor Cells
,”
J. Drug Target.
1061-186X,
14
(
8
), pp.
536
545
.
139.
Pasqualini
,
R.
,
Koivunen
,
E.
,
Kain
,
R.
,
Lahdenranta
,
J.
,
Sakamoto
,
M.
,
Stryhn
,
A.
,
Ashmun
,
R. A.
,
Shapiro
,
L. H.
,
Arap
,
W.
, and
Ruoslahti
,
E.
, 2000, “
Aminopeptidase N is a Receptor for Tumor-Homing Peptides and a Target for Inhibiting Angiogenesis
,”
Cancer Res.
0008-5472,
60
(
3
), pp.
722
727
.
140.
Sakamoto
,
N.
,
Iwahana
,
M.
,
Tanaka
,
N. G.
, and
Osada
,
Y.
, 1991, “
Inhibition of Angiogenesis and Tumor-Growth by a Synthetic Laminin Peptide, CDPGYIGSR-NH2
,”
Cancer Res.
0008-5472,
51
(
3
), pp.
903
906
.
141.
Grant
,
D. S.
,
Tashiro
,
K. I.
,
Segulreal
,
B.
,
Yamada
,
Y.
,
Martin
,
G. R.
, and
Kleinman
,
H. K.
, 1989, “
2 Different Laminin Domains Mediate the Differentiation of Human-Endothelial Cells Into Capillary-Like Structures Invitro
,”
Cell
0092-8674,
58
(
5
), pp.
933
943
.
142.
Yamamura
,
K.
,
Kibbey
,
M. C.
,
Jun
,
S. H.
, and
Kleinman
,
H. K.
, 1993, “
Effect of Matrigel and Laminin Peptide YIGSR on Tumor-Growth and Metastasis
,”
Semin Cancer Biol.
1044-579X,
4
(
4
), pp.
259
265
.
143.
Iwamoto
,
Y.
,
Robey
,
F. A.
,
Graf
,
J.
,
Sasaki
,
M.
,
Kleinman
,
H. K.
,
Yamada
,
Y.
, and
Martin
,
G. R.
, 1987, “
YIGSR, A Synthetic Laminin Pentapeptide, Inhibits Experimental Metastasis Formation
,”
Science
0036-8075,
238
(
4830
), pp.
1132
1134
.
144.
Arap
,
W.
,
Pasqualini
,
R.
, and
Ruoslahti
,
E.
, 1998, “
Cancer Treatment by Targeted Drug Delivery to Tumor Vasculature in a Mouse Model
,”
Science
0036-8075,
279
(
5349
), pp.
377
380
.
145.
Asai
,
T.
,
Shimizu
,
K.
,
Kondo
,
M.
,
Kuromi
,
K.
,
Watanabe
,
K.
,
Ogino
,
K.
,
Taki
,
T.
,
Shuto
,
S.
,
Matsuda
,
A.
, and
Oku
,
N.
, 2002, “
Anti-Neovascular Therapy by Liposomal DPP-CNDAC Targeted to Angiogenic Vessels
,”
FEBS Lett.
0014-5793,
520
(
1–3
), pp.
167
170
.
146.
Oku
,
N.
,
Asai
,
T.
,
Watanabe
,
K.
,
Kuromi
,
K.
,
Nagatsuka
,
M.
,
Kurohane
,
K.
,
Kikkawa
,
H.
,
Ogino
,
K.
,
Tanaka
,
M.
,
Ishikawa
,
D.
,
Tsukada
,
H.
,
Momose
,
M.
,
Nakayama
,
J.
, and
Taki
,
T.
, 2002, “
Anti-Neovascular Therapy Using Novel Peptides Homing to Angiogenic Vessels
,”
Oncogene
0950-9232,
21
(
17
), pp.
2662
2669
.
147.
Browder
,
T.
,
Butterfield
,
C. E.
,
Kraling
,
B. M.
,
Shi
,
B.
,
Marshall
,
B.
,
O'Reilly
,
M. S.
, and
Folkman
,
J.
, 2000, “
Antiangiogenic Scheduling of Chemotherapy Improves Efficacy Against Experimental Drug-Resistant Cancer
,”
Cancer Res.
0008-5472,
60
(
7
), pp.
1878
1886
.
148.
Shimizu
,
K.
,
Sawazaki
,
Y.
,
Tanaka
,
T.
,
Asai
,
T.
, and
Oku
,
N.
, 2008, “
Chronopharmacologic Cancer Treatment With an Angiogenic Vessel-Targeted Liposomal Drug
,”
Biol. Pharm. Bull.
0918-6158,
31
(
1
), pp.
95
98
.
149.
Koyanagi
,
S.
,
Kuramoto
,
Y.
,
Nakagawa
,
H.
,
Aramaki
,
H.
,
Ohdo
,
S.
,
Soeda
,
S.
, and
Shimeno
,
H.
, 2003, “
A Molecular Mechanism Regulating Circadian Expression of Vascular Endothelial Growth Factor in Tumor Cells
,”
Cancer Res.
0008-5472,
63
(
21
), pp.
7277
7283
.
150.
Tammi
,
R.
,
Rilla
,
K.
,
Pienimaki
,
J. -P.
,
MacCallum
,
D. K.
,
Hogg
,
M.
,
Luukkonen
,
M.
,
Hascall
,
V. C.
, and
Tammi
,
M.
, 2001, “
Hyaluronan Enters Keratinocytes by a Novel Endocytic Route for Catabolism
,”
J. Biol. Chem.
0021-9258,
276
(
37
), pp.
35111
35122
.
151.
Jiang
,
H.
,
Peterson
,
R. S.
,
Wang
,
W.
,
Bartnik
,
E.
,
Knudson
,
C. B.
, and
Knudson
,
W.
, 2002, “
A Requirement for the CD44 Cytoplasmic Domain for Hyaluronan Binding, Pericellular Matrix Assembly, and Receptor-Mediated Endocytosis in COS-7 Cells
,”
J. Biol. Chem.
0021-9258,
277
(
12
), pp.
10531
10538
.
152.
Goebeler
,
M.
,
Kaufmann
,
D.
,
Brocker
,
E. B.
, and
Klein
,
C. E.
, 1996, “
Migration of Highly Aggressive Melanoma Cells on Hyaluronic Acid is Associated With Functional Changes, Increased Turnover and Shedding of CD44 Receptors
,”
J. Cell Sci.
,
109
(
7
), pp.
1957
1964
. 0021-9533
153.
Naor
,
D.
,
Nedvetzki
,
S.
,
Golan
,
I.
,
Melnik
,
L.
, and
Faitelson
,
Y.
, 2002, “
CD44 in Cancer
,”
Crit. Rev. Clin. Lab Sci.
1040-8363,
39
(
6
), pp.
527
579
.
154.
Chelberg
,
M. K.
,
McCarthy
,
J. B.
,
Skubitz
,
A. P.
,
Furcht
,
L. T.
, and
Tsilibary
,
E. C.
, 1990, “
Characterization of a Synthetic Peptide From Type IV Collagen That Promotes Melanoma Cell Adhesion, Spreading, and Motility
,”
J. Cell Biol.
0021-9525,
111
(
1
), pp.
261
270
.
155.
Fields
,
C. G.
,
Mickelson
,
D. J.
,
Drake
,
S. L.
,
McCarthy
,
J. B.
, and
Fields
,
G. B.
, 1993, “
Melanoma Cell Adhesion and Spreading Activities of a Synthetic 124-Residue Triple-Helical “Mini-Collagen”
,”
J. Biol. Chem.
0021-9258,
268
(
19
), pp.
14153
14160
.
156.
Lauer-Fields
,
J. L.
,
Malkar
,
N. B.
,
Richet
,
G.
,
Drauz
,
K.
, and
Fields
,
G. B.
, 2003, “
Melanoma Cell CD44 Interaction With the Alpha 1(IV)1263-1277 Region From Basement Membrane Collagen is Modulated by Ligand Glycosylation
,”
J. Biol. Chem.
0021-9258,
278
(
16
), pp.
14321
14330
.
157.
Malkar
,
N. B.
,
Lauer-Fields
,
J. L.
,
Borgia
,
J. A.
, and
Fields
,
G. B.
, 2002, “
Modulation of Triple-Helical Stability and Subsequent Melanoma Cellular Responses by Single-Site Substitution of Fluoroproline Derivatives
,”
Biochemistry
0006-2960,
41
(
19
), pp.
6054
6064
.
158.
Yu
,
Y. C.
,
Berndt
,
P.
,
Tirrell
,
M.
, and
Fields
,
G. B.
, 1996, “
Self-Assembling Amphiphiles for Construction of Protein Molecular Architecture
,”
J. Am. Chem. Soc.
0002-7863,
118
(
50
), pp.
12515
12520
.
159.
Yu
,
Y. C.
,
Tirrell
,
M.
, and
Fields
,
G. B.
, 1998, “
Minimal Lipidation Stabilizes Protein-Like Molecular Architecture
,”
J. Am. Chem. Soc.
0002-7863,
120
(
39
), pp.
9979
9987
.
160.
Yu
,
Y. C.
,
Roontga
,
V.
,
Daragan
,
V. A.
,
Mayo
,
K. H.
,
Tirrell
,
M.
, and
Fields
,
G. B.
, 1999, “
Structure and Dynamics of Peptide-Amphiphiles Incorporating Triple-Helical Proteinlike Molecular Architecture
,”
Biochemistry
0006-2960,
38
(
5
), pp.
1659
1668
.
161.
Torchilin
,
V. P.
, 2008, “
Tat Peptide-Mediated Intracellular Delivery of Pharmaceutical Nanocarriers
,”
Adv. Drug Delivery Rev.
0169-409X,
60
(
4–5
), pp.
548
558
.
162.
Oba
,
M.
,
Fukushima
,
S.
,
Kanayama
,
N.
,
Aoyagi
,
K.
,
Nishiyama
,
N.
,
Koyama
,
H.
, and
Kataoka
,
K.
, 2007, “
Cyclic RGD Peptide-Conjugated Polyplex Micelles as a Targetable Gene Delivery System Directed to Cells Possessing αvβ5 and αvβ5 Integrins
,”
Bioconjugate Chem.
1043-1802,
18
(
5
), pp.
1415
1423
.
163.
Zhang
,
Y.
,
Qi
,
X. R.
,
Gao
,
Y.
,
Wei
,
L.
,
Maitani
,
Y.
, and
Nagai
,
T.
, 2007, “
Mechanisms of Co-Modified Liver-Targeting Liposomes as Gene Delivery Carriers Based on Cellular Uptake and Antigens Inhibition Effect
,”
J. Controlled Release
0168-3659,
117
(
2
), pp.
281
290
.
164.
Zhang
,
H.
,
Kusunose
,
J.
,
Kheirolomoom
,
A.
,
Seo
,
J. W.
,
Qi
,
J.
,
Watson
,
K. D.
,
Lindfors
,
H. A.
,
Ruoslahti
,
E.
,
Sutcliffe
,
J. L.
, and
Ferrara
,
K. W.
, 2008, “
Dynamic Imaging of Arginine-Rich Heart-Targeted Vehicles in a Mouse Model
,”
Biomaterials
0142-9612,
29
(
12
), pp.
1976
1988
.
165.
Liu
,
Y.
, and
Deisseroth
,
A.
, 2006, “
Tumor Vascular Targeting Therapy With Viral Vectors
,”
Blood
0006-4971,
107
(
8
), pp.
3027
3033
.
166.
Hart
,
S. L.
,
Arancibia-Carcamo
,
C. V.
,
Wolfert
,
M. A.
,
Mailhos
,
C.
,
O'Reilly
,
N. J.
,
Ali
,
R. R.
,
Coutelle
,
C.
,
George
,
A. J. T.
,
Harbottle
,
R. P.
,
Knight
,
A. M.
,
Larkin
,
D. F. P.
,
Levinsky
,
R. J.
,
Seymour
,
L. W.
,
Thrasher
,
A. J.
, and
Kinnon
,
C.
, 1998, “
Lipid-Mediated Enhancement of Transfection by a Nonviral Integrin-Targeting Vector
,”
Hum. Gene Ther.
1043-0342,
9
(
4
), pp.
575
585
.
167.
Irvine
,
S. A.
,
Meng
,
Q. -H.
,
Afzal
,
F.
,
Ho
,
J.
,
Wong
,
J. B.
,
Hailes
,
H. C.
,
Tabor
,
A. B.
,
McEwan
,
J. R.
, and
Hart
,
S. L.
, 2008, “
Receptor-Targeted Nanocomplexes Optimized for Gene Transfer to Primary Vascular Cells and Explant Cultures of Rabbit Aorta
,”
Mol. Ther.
,
16
(
3
), pp.
508
515
. 1525-0016
168.
Pardridge
,
W.
, 2005, “
Molecular Biology of the Blood-Brain Barrier
,”
Mol. Biotechnol.
1073-6085,
30
(
1
), pp.
57
69
.
169.
Bickel
,
U.
,
Yoshikawa
,
T.
, and
Pardridge
,
W. M.
, 1993, “
Delivery of Peptides and Proteins Through the Blood-Brain Barrier
,”
Adv. Drug Delivery Rev.
0169-409X,
10
(
2–3
), pp.
205
245
.
170.
Jefferies
,
W. A.
,
Brandon
,
M. R.
,
Hunt
,
S. V.
,
Williams
,
A. F.
,
Gatter
,
K. C.
, and
Mason
,
D. Y.
, 1984, “
Transferrin Receptor on Endothelium of Brain Capillaries
,”
Nature (London)
0028-0836,
312
(
5990
), pp.
162
163
.
171.
Wu
,
D.
,
Yang
,
J.
, and
Pardridge
,
W. M.
, 1997, “
Drug Targeting of a Peptide Radiopharmaceutical Through the Primate Blood Brain Barrier In Vivo With a Monoclonal Antibody to the Human Insulin Receptor
,”
J. Clin. Invest.
0021-9738,
100
(
7
), pp.
1804
1812
.
172.
Raussens
,
V.
,
Mah
,
M. K. H.
,
Kay
,
C. M.
,
Sykes
,
B. D.
, and
Ryan
,
R. O.
, 2000, “
Structural Characterization of a Low Density Lipoprotein Receptor-Active Apolipoprotein E Peptide, ApoE3-(126-183)
,”
J. Biol. Chem.
0021-9258,
275
(
49
), pp.
38329
38336
.
173.
Morrow
,
J. A.
,
Arnold
,
K. S.
,
Dong
,
J.
,
Balestra
,
M. E.
,
Innerarity
,
T. L.
, and
Weisgraber
,
K. H.
, 2000, “
Effect of Arginine 172 on the Binding of Apolipoprotein E to the Low Density Lipoprotein Receptor
,”
J. Biol. Chem.
0021-9258,
275
(
4
), pp.
2576
2580
.
174.
Tuma
,
P. L.
, and
Hubbard
,
A. L.
, 2003, “
Transcytosis: Crossing Cellular Barriers
,”
Physiol. Rev.
0031-9333,
83
(
3
), pp.
871
932
.
175.
Innerarity
,
T. L.
,
Pitas
,
R. E.
, and
Mahley
,
R. W.
, 1979, “
Binding of Arginine-Rich (E) Apoprotein After Recombination With Phospholipid Vesicles to the Low Density Lipoprotein Receptors of Fibroblasts
,”
J. Biol. Chem.
0021-9258,
254
(
10
), pp.
4186
4190
.
176.
Maeda
,
H.
,
Nakamura
,
H.
,
Kobori
,
S.
,
Okada
,
M.
,
Mori
,
H.
,
Niki
,
H.
,
Ogura
,
T.
, and
Hiraga
,
S.
, 1989, “
Identification of Human Apolipoprotein E Variant Gene: Apolipoprotein E7 (Glu244,245–Lys244,245)
,”
J. Biochem.
,
105
(
1
), pp.
51
54
. 0021-924X
177.
Dyer
,
C. A.
,
Cistola
,
D. P.
,
Parry
,
G. C.
, and
Curtiss
,
L. K.
, 1995, “
Structural Features of Synthetic Peptides of Apolipoprotein E That Bind the LDL Receptor
,”
J. Lipid Res.
0022-2275,
36
(
1
), pp.
80
88
.
178.
Wang
,
X. -S.
,
Ciraolo
,
G.
,
Morris
,
R.
, and
Gruenstein
,
E.
, 1997, “
Identification of a Neuronal Endocytic Pathway Activated by an Apolipoprotein E (Apoe) Receptor Binding Peptide
,”
Brain Res.
0006-8993,
778
(
1
), pp.
6
15
.
179.
Nasongkla
,
N.
,
Shuai
,
X.
,
Ai
,
H.
,
Weinberg
,
B. D.
,
Pink
,
J.
,
Boothman
,
D. A.
, and
Gao
,
J.
, 2004, “
cRGD-Functionalized Polymer Micelles for Targeted Doxorubicin Delivery
,”
Angew. Chem., Int. Ed.
1433-7851,
43
(
46
), pp.
6323
6327
.
180.
Nasongkla
,
N.
,
Bey
,
E.
,
Ren
,
J.
,
Ai
,
H.
,
Khemtong
,
C.
,
Guthi
,
J. S.
,
Chin
,
S. F.
,
Sherry
,
A. D.
,
Boothman
,
D. A.
, and
Gao
,
J.
, 2006, “
Multifunctional Polymeric Micelles as Cancer-Targeted, MRI-Ultrasensitive Drug Delivery Systems
,”
Nano Lett.
1530-6984,
6
(
11
), pp.
2427
2430
.
181.
Xiong
,
X. B.
,
Mahmud
,
A.
,
Uludag
,
H.
, and
Lavasanifar
,
A.
, 2007, “
Conjugation of Arginine-Glycine-Aspartic Acid Peptides to Poly(Ethylene Oxide)-b-Poly(ε-Caprolactone) Micelles for Enhanced Intracellular Drug Delivery to Metastatic Tumor Cells
,”
Biomacromolecules
1525-7797,
8
(
3
), pp.
874
884
.
182.
Garinot
,
M.
,
Fievez
,
V.
,
Pourcelle
,
V.
,
Stoffelbach
,
F.
,
des Rieux
,
A.
,
Plapied
,
L.
,
Theate
,
I.
,
Freichels
,
H.
,
Jerome
,
C.
,
Marchand-Brynaert
,
J.
,
Schneider
,
Y. -J.
, and
Preat
,
V.
, 2007, “
PEGylated PLGA-Based Nanoparticles Targeting M Cells for Oral Vaccination
,”
J. Controlled Release
0168-3659,
120
(
3
), pp.
195
204
.
183.
Wheatley
,
M. A.
,
Lathia
,
J. D.
, and
Oum
,
K. L.
, 2007, “
Polymeric Ultrasound Contrast Agents Targeted to Integrins: Importance of Process Methods and Surface Density of Ligands
,”
Biomacromolecules
1525-7797,
8
(
2
), pp.
516
522
.
184.
Massia
,
S. P.
, and
Hubbell
,
J. A.
, 1991, “
An RGD Spacing of 440 nm is Sufficient for Integrin Alpha V Beta 3-Mediated Fibroblast Spreading and 140 nm for Focal Contact and Stress Fiber Formation
,”
J. Cell Biol.
0021-9525,
114
(
5
), pp.
1089
1100
.
185.
Reddy
,
G. R.
,
Bhojani
,
M. S.
,
McConville
,
P.
,
Moody
,
J.
,
Moffat
,
B. A.
,
Hall
,
D. E.
,
Kim
,
G.
,
Koo
,
Y. -E. L.
,
Woolliscroft
,
M. J.
,
Sugai
,
J. V.
,
Johnson
,
T. D.
,
Philbert
,
M. A.
,
Kopelman
,
R.
,
Rehemtulla
,
A.
, and
Ross
,
B. D.
, 2006, “
Vascular Targeted Nanoparticles for Imaging and Treatment of Brain Tumors
,”
Clin. Cancer Res.
1078-0432,
12
(
22
), pp.
6677
6686
.
186.
Sethuraman
,
V. A.
,
Na
,
K.
, and
Bae
,
Y. H.
, 2006, “
pH-Responsive Sulfonamide/PEI System for Tumor Specific Gene Delivery: An In Vitro Study
,”
Biomacromolecules
1525-7797,
7
(
1
), pp.
64
70
.
187.
Sethuraman
,
V. A.
, and
Bae
,
Y. H.
, 2007, “
TAT Peptide-Based Micelle System for Potential Active Targeting of Anti-Cancer Agents to Acidic Solid Tumors
,”
J. Controlled Release
0168-3659,
118
(
2
), pp.
216
224
.
188.
Sethuraman
,
V.
,
Lee
,
M.
, and
Bae
,
Y.
, 2008, “
A Biodegradable pH-Sensitive Micelle System for Targeting Acidic Solid Tumors
,”
Pharm. Res.
0724-8741,
25
(
3
), pp.
657
666
.
189.
Liu
,
L.
,
Guo
,
K.
,
Lu
,
J.
,
Venkatraman
,
S. S.
,
Luo
,
D.
,
Ng
,
K. C.
,
Ling
,
E. -A.
,
Moochhala
,
S.
, and
Yang
,
Y. -Y.
, 2008, “
Biologically Active Core/Shell Nanoparticles Self-Assembled From Cholesterol-Terminated PEG-TAT for Drug Delivery Across the Blood-Brain Barrier
,”
Biomaterials
0142-9612,
29
(
10
), pp.
1509
1517
.
190.
Tosi
,
G.
,
Costantino
,
L.
,
Rivasi
,
F.
,
Ruozi
,
B.
,
Leo
,
E.
,
Vergoni
,
A. V.
,
Tacchi
,
R.
,
Bertolini
,
A.
,
Vandelli
,
M. A.
, and
Forni
,
F.
, 2007, “
Targeting the Central Nervous System: In Vivo Experiments With Peptide-Derivatized Nanoparticles Loaded With Loperamide and Rhodamine-123
,”
J. Controlled Release
0168-3659,
122
(
1
), pp.
1
9
.
191.
Farokhzad
,
O. C.
,
Cheng
,
J.
,
Teply
,
B. A.
,
Sherifi
,
I.
,
Jon
,
S.
,
Kantoff
,
P. W.
,
Richie
,
J. P.
, and
Langer
,
R.
, 2006, “
Targeted Nanoparticle-Aptamer Bioconjugates for Cancer Chemotherapy In Vivo
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
103
(
16
), pp.
6315
6320
.
192.
Cheng
,
J.
,
Teply
,
B. A.
,
Sherifi
,
I.
,
Sung
,
J.
,
Luther
,
G.
,
Gu
,
F. X.
,
Levy-Nissenbaum
,
E.
,
Radovic-Moreno
,
A. F.
,
Langer
,
R.
, and
Farokhzad
,
O. C.
, 2007, “
Formulation of Functionalized PLGA-PEG Nanoparticles for In Vivo Targeted Drug Delivery
,”
Biomaterials
0142-9612,
28
(
5
), pp.
869
876
.
193.
Gu
,
F.
,
Zhang
,
L.
,
Teply
,
B. A.
,
Mann
,
N.
,
Wang
,
A.
,
Radovic-Moreno
,
A. F.
,
Langer
,
R.
, and
Farokhzad
,
O. C.
, 2008, “
From the Cover: Precise Engineering of Targeted Nanoparticles by Using Self-Assembled Biointegrated Block Copolymers
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
105
(
7
), pp.
2586
2591
.
194.
Yap
,
Y. W.
,
Whiteman
,
M.
,
Bay
,
B. H.
,
Li
,
Y. H.
,
Sheu
,
F. S.
,
Qi
,
R. Z.
,
Tan
,
C. H.
, and
Cheung
,
N. S.
, 2006, “
Hypochlorous Acid Induces Apoptosis of Cultured Cortical Neurons Through Activation of Calpains and Rupture of Lysosomes
,”
J. Neurochem.
0022-3042,
98
(
5
), pp.
1597
1609
.
195.
Rehor
,
A.
,
Schmoekel
,
H.
,
Tirelli
,
N.
, and
Hubbell
,
J. A.
, 2008, “
Functionalization of Polysulfide Nanoparticles and Their Performance as Circulating Carriers
,”
Biomaterials
0142-9612,
29
(
12
), pp.
1958
1966
.
196.
Liu
,
J.
,
Zhang
,
Q.
,
Remsen
,
E. E.
, and
Wooley
,
K. L.
, 2001, “
Nanostructured Materials Designed for Cell Binding and Transduction
,”
Biomacromolecules
1525-7797,
2
(
2
), pp.
362
368
.
197.
Becker
,
M. L.
,
Remsen
,
E. E.
,
Pan
,
D.
, and
Wooley
,
K. L.
, 2004, “
Peptide-Derivatized Shell-Cross-Linked Nanoparticles. 1. Synthesis and Characterization
,”
Bioconjugate Chem.
1043-1802,
15
(
4
), pp.
699
709
.
198.
Becker
,
M. L.
,
Bailey
,
L. O.
, and
Wooley
,
K. L.
, 2004, “
Peptide-Derivatized Shell-Cross-Linked Nanoparticles. 2. Biocompatibility Evaluation
,”
Bioconjugate Chem.
1043-1802,
15
(
4
), pp.
710
717
.
199.
Rothenfluh
,
D. A.
,
Bermudez
,
H.
,
O’Neil
,
C. P.
, and
Hubbell
,
J. A.
, 2008, “
Biofunctional Polymer Nanoparticles for Intra-Articular Targeting and Retention in Cartilage
,”
Nature Mater.
1476-1122,
7
(
3
), pp.
248
254
.
200.
Kwon
,
Y. J.
,
Standley
,
S. M.
,
Goodwin
,
A. P.
,
Gillies
,
E. R.
, and
Frechet
,
J. M. J.
, 2005, “
Directed Antigen Presentation Using Polymeric Microparticulate Carriers Degradable at Lysosomal pH for Controlled Immune Responses
,”
Mol. Pharm.
,
2
(
1
), pp.
83
91
. 1543-8384
201.
Cohen
,
J. L.
,
Almutairi
,
A.
,
Cohen
,
J. A.
,
Bernstein
,
M.
,
Brody
,
S. L.
,
Schuster
,
D. P.
, and
Frechet
,
J. M. J.
, 2008, “
Enhanced Cell Penetration of Acid-Degradable Particles Functionalized With Cell-Penetrating Peptides
,”
Bioconjugate Chem.
1043-1802,
19
(
4
), pp.
876
881
.
202.
Demirgöz
,
D.
,
Pangburn
,
T. O.
,
Davis
,
K. P.
,
Lee
,
S.
,
Bates
,
F. S.
, and
Kokkoli
,
E.
, 2009, “
PR_b-Targeted Delivery of Tumor Necrosis Factor-α by Polymersomes for the Treatment of Prostate Cancer
,”
Soft Matter
1744-683X,
5
(
10
), pp.
2011
2019
.
203.
Christian
,
N. A.
,
Milone
,
M. C.
,
Ranka
,
S. S.
,
Li
,
G.
,
Frail
,
P. R.
,
Davis
,
K. P.
,
Bates
,
F. S.
,
Therien
,
M. J.
,
Ghoroghchian
,
P. P.
,
June
,
C. H.
, and
Hammer
,
D. A.
, 2007, “
Tat-Functionalized Near-Infrared Emissive Polymersomes for Dendritic Cell Labeling
,”
Bioconjugate Chem.
1043-1802,
18
(
1
), pp.
31
40
.
204.
Chandna
,
P.
,
Saad
,
M.
,
Wang
,
Y.
,
Ber
,
E.
,
Khandare
,
J.
,
Vetcher
,
A. A.
,
Soldatenkov
,
V. A.
, and
Minko
,
T.
, 2007, “
Targeted Proapoptotic Anticancer Drug Delivery System
,”
Mol. Pharm.
,
4
(
5
), pp.
668
678
. 1543-8384
205.
Dharap
,
S. S.
,
Qiu
,
B.
,
Williams
,
G. C.
,
Sinko
,
P.
,
Stein
,
S.
, and
Minko
,
T.
, 2003, “
Molecular Targeting of Drug Delivery Systems to Ovarian Cancer by BH3 and LHRH Peptides
,”
J. Controlled Release
0168-3659,
91
(
1–2
), pp.
61
73
.
206.
Shukla
,
R.
,
Thomas
,
T. P.
,
Peters
,
J.
,
Kotlyar
,
A.
,
Myc
,
A.
, and
Baker
,
J. R.
, Jr.
, 2005, “
Tumor Angiogenic Vasculature Targeting With PAMAM Dendrimer-RGD Conjugates
,”
Chem. Commun. (Cambridge)
1359-7345,
2005
(
46
), pp.
5739
5741
.
207.
Pasqualini
,
R.
,
Koivunen
,
E.
, and
Ruoslahti
,
E.
, 1997, “
αv Integrins as Receptors for Tumor Targeting by Circulating Ligands
,”
Nat. Biotechnol.
1087-0156,
15
(
6
), pp.
542
546
.
208.
Arap
,
M. A.
,
Lahdenranta
,
J.
,
Mintz
,
P. J.
,
Hajitou
,
A.
,
Sarkis
,
A. S.
,
Arap
,
W.
, and
Pasqualini
,
R.
, 2004, “
Cell Surface Expression of the Stress Response Chaperone GRP78 Enables Tumor Targeting by Circulating Ligands
,”
Cancer Cells
1042-2196,
6
(
3
), pp.
275
284
.
209.
Mintz
,
P. J.
,
Kim
,
J.
,
Do
,
K. -A.
,
Wang
,
X.
,
Zinner
,
R. G.
,
Cristofanilli
,
M.
,
Arap
,
M. A.
,
Hong
,
W. K.
,
Troncoso
,
P.
,
Logothetis
,
C. J.
,
Pasqualini
,
R.
, and
Arap
,
W.
, 2003, “
Fingerprinting the Circulating Repertoire of Antibodies From Cancer Patients
,”
Nat. Biotechnol.
1087-0156,
21
(
1
), pp.
57
63
.
210.
Agarwal
,
A.
,
Saraf
,
S.
,
Asthana
,
A.
,
Gupta
,
U.
,
Gajbhiye
,
V.
, and
Jain
,
N. K.
, 2008, “
Ligand Based Dendritic Systems for Tumor Targeting
,”
Int. J. Pharm.
0378-5173,
350
(
1–2
), pp.
3
13
.
211.
Brown
,
M. D.
,
Schatzlein
,
A. G.
, and
Uchegbu
,
I. F.
, 2001, “
Gene Delivery With Synthetic (Non Viral) Carriers
,”
Int. J. Pharm.
0378-5173,
229
(
1–2
), pp.
1
21
.
212.
Okuda
,
T.
,
Sugiyama
,
A.
,
Niidome
,
T.
, and
Aoyagi
,
H.
, 2004, “
Characters of Dendritic Poly(-Lysine) Analogues With the Terminal Lysines Replaced With Arginines and Histidines as Gene Carriers In Vitro
,”
Biomaterials
0142-9612,
25
(
3
), pp.
537
544
.
213.
Kim
,
J. -B.
,
Choi
,
J. S.
,
Nam
,
K.
,
Lee
,
M.
,
Park
,
J. -S.
, and
Lee
,
J. -K.
, 2006, “
Enhanced Transfection of Primary Cortical Cultures Using Arginine-Grafted PAMAM Dendrimer, PAMAM-Arg
,”
J. Controlled Release
0168-3659,
114
(
1
), pp.
110
117
.
214.
Kim
,
T. I.
,
Baek
,
J. U.
,
Yoon
,
J. K.
,
Choi
,
J. S.
,
Kim
,
K.
, and
Park
,
J. S.
, 2007, “
Synthesis and Characterization of a Novel Arginine-Grafted Dendritic Block Copolymer for Gene Delivery and Study of Its Cellular Uptake Pathway Leading to Transfection
,”
Bioconjugate Chem.
1043-1802,
18
(
2
), pp.
309
317
.
215.
Bi
,
X.
,
Shi
,
X.
, and
Baker
,
J. R.
, 2008, “
Synthesis, Characterization and Stability of a Luteinizing Hormone-Releasing Hormone (LHRH)-Functionalized Poly(Amidoamine) Dendrimer Conjugate
,”
J. Biomater. Sci., Polym. Ed.
0920-5063,
19
, pp.
131
142
.
216.
Khandare
,
J. J.
,
Chandna
,
P.
,
Wang
,
Y.
,
Pozharov
,
V. P.
, and
Minko
,
T.
, 2006, “
Novel Polymeric Prodrug With Multivalent Components for Cancer Therapy
,”
J. Pharmacol. Exp. Ther.
0022-3565,
317
(
3
), pp.
929
937
.
217.
Dharap
,
S. S.
,
Wang
,
Y.
,
Chandna
,
P.
,
Khandare
,
J. J.
,
Qiu
,
B.
,
Gunaseelan
,
S.
,
Sinko
,
P. J.
,
Stein
,
S.
,
Farmanfarmaian
,
A.
, and
Minko
,
T.
, 2005, “
Tumor-Specific Targeting of an Anticancer Drug Delivery System by LHRH Peptide
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
102
(
36
), pp.
12962
12967
.
218.
Erbacher
,
P.
,
Remy
,
J. S.
, and
Behr
,
J. P.
, 1999, “
Gene Transfer With Synthetic Virus-Like Particles Via the Integrin-Mediated Endocytosis Pathway
,”
Gene Ther.
0969-7128,
6
(
1
), pp.
138
145
.
219.
Woodle
,
M. C.
,
Scaria
,
P.
,
Ganesh
,
S.
,
Subramanian
,
K.
,
Titmas
,
R.
,
Cheng
,
C.
,
Yang
,
J.
,
Pan
,
Y.
,
Weng
,
K.
,
Gu
,
C.
, and
Torkelson
,
S.
, 2001, “
Sterically Stabilized Polyplex: Ligand-Mediated Activity
,”
J. Controlled Release
0168-3659,
74
(
1–3
), pp.
309
311
.
220.
Kunath
,
K.
,
Merdan
,
T.
,
Hegener
,
O.
,
Häberlein
,
H.
, and
Kissel
,
T.
, 2003, “
Integrin Targeting Using RGD-PEI Conjugates for In Vitro Gene Transfer
,”
J. Gene Med.
,
5
(
7
), pp.
588
599
. 1099-498X
221.
Suh
,
W.
,
Han
,
S. -O.
,
Yu
,
L.
, and
Kim
,
S. W.
, 2002, “
An Angiogenic, Endothelial-Cell-Targeted Polymeric Gene Carrier
,”
Mol. Ther.
,
6
(
5
), pp.
664
672
. 1525-0016
222.
Kim
,
W. J.
,
Yockman
,
J. W.
,
Lee
,
M.
,
Jeong
,
J. H.
,
Kim
,
Y. -H.
, and
Kim
,
S. W.
, 2005, “
Soluble Flt-1 Gene Delivery Using PEI-g-PEG-RGD Conjugate for Anti-Angiogenesis
,”
J. Controlled Release
0168-3659,
106
(
1–2
), pp.
224
234
.
223.
Schiffelers
,
R. M.
,
Ansari
,
A.
,
Xu
,
J.
,
Zhou
,
Q.
,
Tang
,
Q.
,
Storm
,
G.
,
Molema
,
G.
,
Lu
,
P. Y.
,
Scaria
,
P. V.
, and
Woodle
,
M. C.
, 2004, “
Cancer siRNA Therapy by Tumor Selective Delivery With Ligand-Targeted Sterically Stabilized Nanoparticle
,”
Nucleic Acids Res.
0305-1048,
32
(
19
), p.
e149
.
224.
Filleur
,
S.
,
Courtin
,
A.
,
Ait-Si-Ali
,
S.
,
Guglielmi
,
J.
,
Merle
,
C.
,
Harel-Bellan
,
A.
,
Clezardin
,
P.
, and
Cabon
,
F.
, 2003, “
SiRNA-Mediated Inhibition of Vascular Endothelial Growth Factor Severely Limits Tumor Resistance to Antiangiogenic Thrombospondin-1 and Slows Tumor Vascularization and Growth
,”
Cancer Res.
0008-5472,
63
(
14
), pp.
3919
3922
.
225.
Oishi
,
J.
,
Ijuin
,
M.
,
Sonoda
,
T.
,
Kang
,
J. -H.
,
Kawamura
,
K.
,
Mori
,
T.
,
Niidome
,
T.
, and
Katayama
,
Y.
, 2006, “
A Protein Kinase Signal-Responsive Gene Carrier Modified RGD Peptide
,”
Bioorg. Med. Chem. Lett.
0960-894X,
16
(
22
), pp.
5740
5743
.
226.
Zugates
,
G. T.
,
Anderson
,
D. G.
,
Little
,
S. R.
,
Lawhorn
,
I. E. B.
, and
Langer
,
R.
, 2006, “
Synthesis of Poly(β-Amino Ester)s With Thiol-Reactive Side Chains for DNA Delivery
,”
J. Am. Chem. Soc.
0002-7863,
128
(
39
), pp.
12726
12734
.
227.
Ishikawa
,
A.
,
Zhou
,
Y. -M.
,
Kambe
,
N.
, and
Nakayama
,
Y.
, 2008, “
Enhancement of Star Vector-Based Gene Delivery to Endothelial Cells by Addition of RGD-Peptide
,”
Bioconjugate Chem.
1043-1802,
19
(
2
), pp.
558
561
.
228.
Harada-Shiba
,
M.
,
Yamauchi
,
K.
,
Harada
,
A.
,
Takamisawa
,
I.
,
Shimokado
,
K.
, and
Kataoka
,
K.
, 2002, “
Polyion Complex Micelles as Vectors In Gene Therapy–Pharmacokinetics and In Vivo Gene Transfer
,”
Gene Ther.
0969-7128,
9
(
6
), pp.
407
414
.
229.
Suk
,
J. S.
,
Suh
,
J.
,
Choy
,
K.
,
Lai
,
S. K.
,
Fu
,
J.
, and
Hanes
,
J.
, 2006, “
Gene Delivery to Differentiated Neurotypic Cells With RGD and HIV Tat Peptide Functionalized Polymeric Nanoparticles
,”
Biomaterials
0142-9612,
27
(
29
), pp.
5143
5150
.
230.
Li
,
D.
,
Tang
,
G. P.
,
Li
,
J. Z.
,
Kong
,
Y.
,
Huang
,
H. L.
,
Min
,
L. J.
,
Zhou
,
J.
,
Shen
,
F. P.
,
Wang
,
Q. Q.
, and
Yu
,
H.
, 2007, “
Dual-Targeting Non-Viral Vector Based on Polyethylenimine Improves Gene Transfer Efficiency
,”
J. Biomater. Sci., Polym. Ed.
0920-5063,
18
, pp.
545
560
.
231.
Funhoff
,
A. M.
,
vanNostrum
,
C. F.
,
Lok
,
M. C.
,
Fretz
,
M. M.
,
Crommelin
,
D. J. A.
, and
Hennink
,
W. E.
, 2004, “
Poly(3-Guanidinopropyl Methacrylate): A Novel Cationic Polymer for Gene Delivery
,”
Bioconjugate Chem.
1043-1802,
15
(
6
), pp.
1212
1220
.
232.
Christiaens
,
B.
,
Dubruel
,
P.
,
Grooten
,
J.
,
Goethals
,
M.
,
Vandekerckhove
,
J.
,
Schacht
,
E.
, and
Rosseneu
,
M.
, 2005, “
Enhancement of Polymethacrylate-Mediated Gene Delivery by Penetratin
,”
Eur. J. Pharm. Sci.
0928-0987,
24
(
5
), pp.
525
537
.
233.
Chen
,
C. P.
,
Kim
,
J. S.
,
Liu
,
D.
,
Rettig
,
G. R.
,
McAnuff
,
M. A.
,
Martin
,
M. E.
, and
Rice
,
K. G.
, 2007, “
Synthetic PEGylated Glycoproteins and Their Utility in Gene Delivery
,”
Bioconjugate Chem.
1043-1802,
18
(
2
), pp.
371
378
.
234.
Segura
,
T.
, and
Hubbell
,
J. A.
, 2007, “
Synthesis and In Vitro Characterization of an ABC Triblock Copolymer for siRNA Delivery
,”
Bioconjugate Chem.
1043-1802,
18
(
3
), pp.
736
745
.
235.
Moore
,
N. M.
,
Barbour
,
T. R.
, and
Sakiyama-Elbert
,
S. E.
, 2008, “
Synthesis and Characterization of Four-Arm Poly(Ethylene Glycol)-Based Gene Delivery Vehicles Coupled to Integrin and DNA-Binding Peptides
,”
Mol. Pharm.
,
5
(
1
), pp.
140
150
. 1543-8384
236.
Kawamura
,
K.
,
Oishi
,
J.
,
Kang
,
J. H.
,
Kodama
,
K.
,
Sonoda
,
T.
,
Murata
,
M.
,
Niidome
,
T.
, and
Katayama
,
Y.
, 2005, “
Intracellular Signal-Responsive Gene Carrier for Cell-Specific Gene Expression
,”
Biomacromolecules
1525-7797,
6
(
2
), pp.
908
913
.
237.
Wagner
,
E.
,
Zenke
,
M.
,
Cotten
,
M.
,
Beug
,
H.
, and
Birnstiel
,
M. L.
, 1990, “
Transferrin-Polycation Conjugates as Carriers for DNA Uptake Into Cells
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
87
(
9
), pp.
3410
3414
.
238.
Cotten
,
M.
,
Langle-Rouault
,
F.
,
Kirlappos
,
H.
,
Wagner
,
E.
,
Mechtler
,
K.
,
Zenke
,
M.
,
Beug
,
H.
, and
Birnstiel
,
M. L.
, 1990, “
Transferrin-Polycation-Mediated Introduction of DNA Into Human Leukemic Cells: Stimulation by Agents That Affect the Survival of Transfected DNA or Modulate Transferrin Receptor Levels
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
87
(
11
), pp.
4033
4037
.
239.
Wagner
,
E.
,
Cotten
,
M.
,
Mechtler
,
K.
,
Kirlappos
,
H.
, and
Birnstiel
,
M. L.
, 1991, “
DNA-Binding Transferrin Conjugates as Functional Gene-Delivery Agents: Synthesis by Linkage of Polylysine or Ethidium Homodimer to the Transferrin Carbohydrate Moiety
,”
Bioconjugate Chem.
1043-1802,
2
(
4
), pp.
226
231
.
240.
Kleemann
,
E.
,
Neu
,
M.
,
Jekel
,
N.
,
Fink
,
L.
,
Schmehl
,
T.
,
Gessler
,
T.
,
Seeger
,
W.
, and
Kissel
,
T.
, 2005, “
Nano-Carriers for DNA Delivery to the Lung Based Upon a TAT-Derived Peptide Covalently Coupled to PEG-PEI
,”
J. Controlled Release
0168-3659,
109
(
1–3
), pp.
299
316
.
241.
Gautam
,
A.
,
Densmore
,
C. L.
,
Golunski
,
E.
,
Xu
,
B.
, and
Waldrep
,
J. C.
, 2001, “
Transgene Expression in Mouse Airway Epithelium by Aerosol Gene Therapy With PEI-DNA Complexes
,”
Mol. Ther.
,
3
(
4
), pp.
551
556
. 1525-0016
242.
Bragonzi
,
A.
,
Dina
,
G.
,
Villa
,
A.
,
Calori
,
G.
,
Biffi
,
A.
,
Bordignon
,
C.
,
Assael
,
B. M.
, and
Conese
,
M.
, 2000, “
Biodistribution and Transgene Expression With Nonviral Cationic Vector/DNA Complexes in the Lungs
,”
Gene Ther.
0969-7128,
7
(
20
), pp.
1753
1760
.
243.
Moffatt
,
S.
,
Wiehle
,
S.
, and
Cristiano
,
R. J.
, 2005, “
Tumor-Specific Gene Delivery Mediated by a Novel Peptide-Polyethylenimine-DNA Polyplex Targeting Aminopeptidase N/CD13
,”
Hum. Gene Ther.
1043-0342,
16
(
1
), pp.
57
67
.
244.
Moffatt
,
S.
, and
Cristiano
,
R. J.
, 2006, “
Uptake Characteristics of NGR-Coupled Stealth PEI/pDNA Nanoparticles Loaded With PLGA-PEG-PLGA Tri-Block Copolymer for Targeted Delivery to Human Monocyte-Derived Dendritic Cells
,”
Int. J. Pharm.
0378-5173,
321
(
1–2
), pp.
143
154
.
245.
Li
,
D.
,
Yu
,
H.
,
Huang
,
H.
,
Shen
,
F.
,
Wu
,
X.
,
Li
,
J.
,
Wang
,
J.
,
Cao
,
X.
,
Wang
,
Q.
, and
Tang
,
G.
, 2007, “
FGF Receptor-Mediated Gene Delivery Using Ligands Coupled to Polyethylenimine
,”
J. Biomater. Appl.
0885-3282,
22
(
2
), pp.
163
180
.
246.
Rao
,
G. A.
,
Tsai
,
R.
,
Roura
,
D.
, and
Hughes
,
J. A.
, 2008, “
Evaluation of the Transfection Property of a Peptide Ligand for the Fibroblast Growth Factor Receptor as Part of PEGylated Polyethylenimine Polyplex
,”
J. Drug Target.
1061-186X,
16
(
1
), pp.
79
89
.
247.
Nori
,
A.
, and
Kopecek
,
J.
, 2005, “
Intracellular Targeting of Polymer-Bound Drugs for Cancer Chemotherapy
,”
Adv. Drug Delivery Rev.
0169-409X,
57
(
4
), pp.
609
636
.
248.
Derossi
,
D.
,
Chassaing
,
G.
, and
Prochiantz
,
A.
, 1998, “
Trojan Peptides: The Penetratin System for Intracellular Delivery
,”
Trends Cell Biol.
0962-8924,
8
(
2
), pp.
84
87
.
249.
Jones
,
S. W.
,
Christison
,
R.
,
Bundell
,
K.
,
Voyce
,
C. J.
,
Brockbank
,
S. M. V.
,
Newham
,
P.
, and
Lindsay
,
M. A.
, 2005, “
Characterisation of Cell-Penetrating Peptide-Mediated Peptide Delivery
,”
Br. J. Pharmacol.
0007-1188,
145
(
8
), pp.
1093
1102
.
250.
Vives
,
E.
, 2003, “
Cellular Uptake of the Tat Peptide: An Endocytosis Mechanism Following Ionic Interactions
,”
J. Mol. Recognit.
0952-3499,
16
(
5
), pp.
265
271
.
251.
Vives
,
E.
,
Richard
,
J.
,
Rispal
,
C.
, and
Lebleu
,
B.
, 2003, “
TAT Peptide Internalization: Seeking the Mechanism of Entry
,”
Curr. Protein Pept. Sci.
1389-2037,
4
(
2
), pp.
125
132
.
252.
El-andaloussi
,
S.
,
Järver
,
P.
,
Johansson
,
H. J.
, and
Langel
,
Ü.
, 2007, “
Cargo-Dependent Cytotoxicity and Delivery Efficacy of Cell-Penetrating Peptides: A Comparative Study
,”
Biochem. J.
0264-6021,
407
(
2
), pp.
285
292
.
253.
van Sluis
,
R.
,
Bhujwalla
,
Z. M.
,
Raghunand
,
N.
,
Ballesteros
,
P.
,
Alvarez
,
J.
,
Cerdán
,
S.
,
Galons
,
J. -P.
, and
Gillies
,
R. J.
, 1999, “
In Vivo Imaging of Extracellular pH Using 1H MRSI
,”
Magn. Reson. Med.
0740-3194,
41
(
4
), pp.
743
750
.
254.
Rubin
,
L. L.
, and
Staddon
,
J. M.
, 1999, “
The Cell Biology of the Blood-Brain Barrier
,”
Annu. Rev. Neurosci.
0147-006X,
22
(
1
), pp.
11
28
.
255.
Pardridge
,
W. M.
, 1983, “
Brain Metabolism: A Perspective From the Blood-Brain Barrier
,”
Physiol. Rev.
0031-9333,
63
(
4
), pp.
1481
1535
.
256.
Kreuter
,
J.
, 2001, “
Nanoparticulate Systems for Brain Delivery of Drugs
,”
Adv. Drug Delivery Rev.
0169-409X,
47
(
1
), pp.
65
81
.
257.
Ahmed
,
F.
,
Pakunlu
,
R. I.
,
Srinivas
,
G.
,
Brannan
,
A.
,
Bates
,
F.
,
Klein
,
M. L.
,
Minko
,
T.
, and
Discher
,
D. E.
, 2006, “
Shrinkage of a Rapidly Growing Tumor by Drug-Loaded Polymersomes: pH-Triggered Release Through Copolymer Degradation
,”
Mol. Pharm.
,
3
(
3
), pp.
340
350
. 1543-8384
258.
Lee
,
C. C.
,
MacKay
,
J. A.
,
Frechet
,
J. M. J.
, and
Szoka
,
F. C.
, 2005, “
Designing Dendrimers for Biological Applications
,”
Nat. Biotechnol.
1087-0156,
23
(
12
), pp.
1517
1526
.
259.
Florence
,
A. T.
, 2005, “
Dendrimers: A Versatile Targeting Platform
,”
Adv. Drug Delivery Rev.
0169-409X,
57
(
15
), pp.
2104
2105
.
260.
Discher
,
B. M.
,
Won
,
Y. Y.
,
Ege
,
D. S.
,
Lee
,
J. C. M.
,
Bates
,
F. S.
,
Discher
,
D. E.
, and
Hammer
,
D. A.
, 1999, “
Polymersomes: Tough Vesicles Made From Diblock Copolymers
,”
Science
0036-8075,
284
(
5417
), pp.
1143
1146
.
261.
Lee
,
J. C.-M.
,
Bermudez
,
H.
,
Discher
,
B. M.
,
Sheehan
,
M. A.
,
Won
,
Y. -Y.
,
Bates
,
F. S.
, and
Discher
,
D. E.
, 2001, “
Preparation, Stability, and In Vitro Performance of Vesicles Made With Diblock Copolymers
,”
Biotechnol. Bioeng.
0006-3592,
73
(
2
), pp.
135
145
.
262.
Discher
,
D. E.
, and
Eisenberg
,
A.
, 2002, “
Polymer Vesicles
,”
Science
0036-8075,
297
(
5583
), pp.
967
973
.
263.
Photos
,
P. J.
,
Bacakova
,
L.
,
Discher
,
B.
,
Bates
,
F. S.
, and
Discher
,
D. E.
, 2003, “
Polymer Vesicles In Vivo: Correlations With PEG Molecular Weight
,”
J. Controlled Release
0168-3659,
90
(
3
), pp.
323
334
.
264.
Discher
,
D. E.
, and
Ahmed
,
F.
, 2006, “
Polymersomes
,”
Annu. Rev. Biomed. Eng.
1523-9829,
8
(
1
), pp.
323
341
.
265.
Discher
,
D. E.
,
Ortiz
,
V.
,
Srinivas
,
G.
,
Klein
,
M. L.
,
Kim
,
Y.
,
Christian
,
D.
,
Cai
,
S.
,
Photos
,
P.
, and
Ahmed
,
F.
, 2007, “
Emerging Applications of Polymersomes in Delivery: From Molecular Dynamics to Shrinkage of Tumors
,”
Prog. Polym. Sci.
0079-6700,
32
(
8–9
), pp.
838
857
.
266.
Meng
,
F.
,
Engbers
,
G. H. M.
, and
Feijen
,
J.
, 2005, “
Biodegradable Polymersomes as a Basis for Artificial Cells: Encapsulation, Release and Targeting
,”
J. Controlled Release
0168-3659,
101
(
1–3
), pp.
187
198
.
267.
Broz
,
P.
,
Benito
,
S. M.
,
Saw
,
C.
,
Burger
,
P.
,
Heider
,
H.
,
Pfisterer
,
M.
,
Marsch
,
S.
,
Meier
,
W.
, and
Hunziker
,
P.
, 2005, “
Cell Targeting by a Generic Receptor-Targeted Polymer Nanocontainer Platform
,”
J. Controlled Release
0168-3659,
102
(
2
), pp.
475
488
.
268.
Ben-Haim
,
N.
,
Broz
,
P.
,
Marsch
,
S.
,
Meier
,
W.
, and
Hunziker
,
P.
, 2008, “
Cell-Specific Integration of Artificial Organelles Based on Functionalized Polymer Vesicles
,”
Nano Lett.
1530-6984,
8
(
5
), pp.
1368
1373
.
269.
Broz
,
P.
,
Ben-Haim
,
N.
,
Grzelakowski
,
M.
,
Marsch
,
S.
,
Meier
,
W.
, and
Hunziker
,
P.
, 2008, “
Inhibition of Macrophage Phagocytotic Activity by a Receptor-Targeted Polymer Vesicle-Based Drug Delivery Formulation of Pravastatin
,”
J. Cardiovasc. Pharmacol.
0160-2446,
51
(
3
), pp.
246
252
.
270.
Ghoroghchian
,
P. P.
,
Frail
,
P. R.
,
Susumu
,
K.
,
Blessington
,
D.
,
Brannan
,
A. K.
,
Bates
,
F. S.
,
Chance
,
B.
,
Hammer
,
D. A.
, and
Therien
,
M. J.
, 2005, “
Near-Infrared-Emissive Polymersomes: Self-Assembled Soft Matter for In Vivo Optical Imaging
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
102
(
8
), pp.
2922
2927
.
271.
Ghoroghchian
,
P. P.
,
Frail
,
P. R.
,
Susumu
,
K.
,
Park
,
T. H.
,
Wu
,
S. P.
,
Uyeda
,
H. T.
,
Hammer
,
D. A.
, and
Therien
,
M. J.
, 2005, “
Broad Spectral Domain Fluorescence Wavelength Modulation of Visible and Near-Infrared Emissive Polymersomes
,”
J. Am. Chem. Soc.
0002-7863,
127
(
44
), pp.
15388
15390
.
272.
Ghoroghchian
,
P. P.
,
Lin
,
J. J.
,
Brannan
,
A. K.
,
Frail
,
P. R.
,
Bates
,
F. S.
,
Therien
,
M. J.
, and
Hammer
,
D. A.
, 2006, “
Quantitative Membrane Loading of Polymer Vesicles
,”
Soft Matter
1744-683X,
2
(
11
), pp.
973
980
.
273.
Sokolov
,
K.
,
Aaron
,
J.
,
Hsu
,
B.
,
Nida
,
D.
,
Gillenwater
,
A.
,
Follen
,
M.
,
MacAulay
,
C.
,
Adler-Storthz
,
K.
,
Korgel
,
B.
,
Descour
,
M.
,
Pasqualini
,
R.
,
Arap
,
W.
,
Lam
,
W.
, and
Richards-Kortum
,
R.
, 2003, “
Optical Systems for In Vivo Molecular Imaging of Cancer
,”
Technol. Cancer Res. Treat.
1533-0346,
2
(
6
), pp.
491
504
.
274.
Sell
,
S.
, 2006, “
Potential Gene Therapy Strategies for Cancer Stem Cells
,”
Curr. Gene Ther.
,
6
(
5
), pp.
579
591
. 1566-5232
275.
Pack
,
D. W.
,
Hoffman
,
A. S.
,
Pun
,
S.
, and
Stayton
,
P. S.
, 2005, “
Design and Development of Polymers for Gene Delivery
,”
Nat. Rev. Drug Discovery
1474-1776,
4
(
7
), pp.
581
593
.
276.
Liu
,
M.
,
Acres
,
B.
,
Balloul
,
J. -M.
,
Bizouarne
,
N.
,
Paul
,
S.
,
Slos
,
P.
, and
Squiban
,
P.
, 2004, “
Gene-Based Vaccines and Immunotherapeutics
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
101
, pp.
14567
14571
.
277.
Cotter
,
F. E.
, 2003, “
Antisense Therapy for Cancer
,”
EJC Suppl.
,
1
(
2
), pp.
19
27
.
278.
Hadj-Slimane
,
R.
,
Lepelletier
,
Y.
,
Lopez
,
N.
,
Garbay
,
C.
, and
Raynaud
,
F.
, 2007, “
Short Interfering RNA (siRNA), a Novel Therapeutic Tool Acting on Angiogenesis
,”
Biochimie
0300-9084,
89
(
10
), pp.
1234
1244
.
279.
Meyer
,
M.
, and
Wagner
,
E.
, 2006, “
Recent Developments in the Application of Plasmid DNA-Based Vectors and Small Interfering RNA Therapeutics for Cancer
,”
Hum. Gene Ther.
1043-0342,
17
(
11
), pp.
1062
1076
.
280.
Tayal
,
V.
, and
Kalra
,
B. S.
, 2008, “
Cytokines and Anti-Cytokines as Therapeutics—An Update
,”
Eur. J. Pharmacol.
0014-2999,
579
(
1–3
), pp.
1
12
.
281.
Wagner
,
E.
, and
Kloeckner
,
J.
, 2006, “
Gene Delivery Using Polymer Therapeutics
,”
Polymer Therapeutics
,
192
, pp.
135
173
.
282.
Lungwitz
,
U.
,
Breunig
,
M.
,
Blunk
,
T.
, and
Gopferich
,
A.
, 2005, “
Polyethylenimine-Based Non-Viral Gene Delivery Systems
,”
Eur. J. Pharm. Biopharm.
0939-6411,
60
(
2
), pp.
247
266
.
283.
de Bruin
,
K.
,
Ruthardt
,
N.
,
von Gersdorff
,
K.
,
Bausinger
,
R.
,
Wagner
,
E.
,
Ogris
,
M.
, and
Bräuchle
,
C.
, 2007, “
Cellular Dynamics of EGF Receptor-Targeted Synthetic Viruses
,”
Mol. Ther.
,
15
(
7
), pp.
1297
1305
. 1525-0016
284.
Behr
,
J. -P.
, 1994, “
Gene Transfer With Synthetic Cationic Amphiphiles: Prospects for Gene Therapy
,”
Bioconjugate Chem.
1043-1802,
5
(
5
), pp.
382
389
.
285.
Boussif
,
O.
,
Lezoualc'h
,
F.
,
Zanta
,
M. A.
,
Mergny
,
M. D.
,
Scherman
,
D.
,
Demeneix
,
B.
, and
Behr
,
J.
, 1995, “
A Versatile Vector for Gene and Oligonucleotide Transfer Into Cells in Culture and In Vivo: Polyethylenimine
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
92
(
16
), pp.
7297
7301
.
286.
Krieg
,
A. M.
, 2002, “
CPG Motifs in Bacterial DNA and Their Immune Effects
,”
Annu. Rev. Immunol.
0732-0582,
20
(
1
), pp.
709
760
.
287.
Banchereau
,
J.
, and
Steinman
,
R. M.
, 1998, “
Dendritic Cells and the Control of Immunity
,”
Nature (London)
0028-0836,
392
(
6673
), pp.
245
252
.
288.
Coombes
,
B. K.
, and
Mahony
,
J. B.
, 2001, “
Dendritic Cell Discoveries Provide New Insight Into the Cellular Immunobiology of DNA Vaccines
,”
Immunol. Lett.
0165-2478,
78
(
2
), pp.
103
111
.
289.
Forrest
,
M. L.
,
Gabrielson
,
N.
, and
Pack
,
D. W.
, 2005, “
Cyclodextrin-Polyethylenimine Conjugates for Targeted In Vitro Gene Delivery
,”
Biotechnol. Bioeng.
0006-3592,
89
(
4
), pp.
416
423
.
290.
Carlson
,
C. C.
,
Smithers
,
S. L.
,
Yeh
,
K. A.
,
Burnham
,
L. L.
, and
Dransfield
,
D. T.
, 1999, “
Protein Kinase A Regulatory Subunits in Colon Cancer
,”
Neoplasia
1522-8002,
1
(
4
), pp.
373
378
.
291.
Rejman
,
J.
,
Bragonzi
,
A.
, and
Conese
,
M.
, 2005, “
Role of Clathrin- and Caveolae-Mediated Endocytosis in Gene Transfer Mediated by Lipo- and Polyplexes
,”
Mol. Ther.
,
12
(
3
), pp.
468
474
. 1525-0016
292.
von Gersdorff
,
K.
,
Sanders
,
N. N.
,
Vandenbroucke
,
R.
,
De Smedt
,
S. C.
,
Wagner
,
E.
, and
Ogris
,
M.
, 2006, “
The Internalization Route Resulting in Successful Gene Expression Depends on Both Cell Line and Polyethylenimine Polyplex Type
,”
Mol. Ther.
,
14
(
5
), pp.
745
753
. 1525-0016
293.
Shaw
,
L. M.
,
Chao
,
C.
,
Wewer
,
U. M.
, and
Mercurio
,
A. M.
, 1996, “
Function of the Integrin α6β1 in Metastatic Breast Carcinoma Cells Assessed by Expression of a Dominant-Negative Receptor
,”
Cancer Res.
0008-5472,
56
(
5
), pp.
959
963
.
294.
Stevenson
,
M.
,
Hale
,
A. B. H.
,
Hale
,
S. J.
,
Green
,
N. K.
,
Black
,
G.
,
Fisher
,
K. D.
,
Ulbrich
,
K.
,
Fabra
,
A.
, and
Seymour
,
L. W.
, 2007, “
Incorporation of a Laminin-Derived Peptide (SIKVAV) on Polymer-Modified Adenovirus Permits Tumor-Specific Targeting Via [Alpha]6-Integrins
,”
Cancer Gene Ther.
0929-1903,
14
(
4
), pp.
335
345
.
295.
Wewer
,
U. M.
,
Shaw
,
L. M.
,
Albrechtsen
,
R.
, and
Mercurio
,
A. M.
, 1997, “
The Integrin Alpha 6 Beta 1 Promotes the Survival of Metastatic Human Breast Carcinoma Cells in Mice
,”
Am. J. Pathol.
0002-9440,
151
(
5
), pp.
1191
1198
.
296.
Dufès
,
C.
,
Uchegbu
,
I. F.
, and
Schätzlein
,
A. G.
, 2005, “
Dendrimers in Gene Delivery
,”
Adv. Drug Delivery Rev.
0169-409X,
57
(
15
), pp.
2177
2202
.
297.
Wood
,
K. C.
,
Azarin
,
S. M.
,
Arap
,
W.
,
Pasqualini
,
R.
,
Langer
,
R.
, and
Hammond
,
P. T.
, 2008, “
Tumor-Targeted Gene Delivery Using Molecularly Engineered Hybrid Polymers Functionalized With a Tumor-Homing Peptide
,”
Bioconjugate Chem.
1043-1802,
19
(
2
), pp.
403
405
.
298.
Huang
,
R. -Q.
,
Qu
,
Y. -H.
,
Ke
,
W. -L.
,
Zhu
,
J. -H.
,
Pei
,
Y. -Y.
, and
Jiang
,
C.
, 2007, “
Efficient Gene Delivery Targeted to the Brain Using a Transferrin-Conjugated Polyethyleneglycol-Modified Polyamidoamine Dendrimer
,”
FASEB J.
0892-6638,
21
(
4
), pp.
1117
1125
.
299.
Luo
,
D.
,
Haverstick
,
K.
,
Belcheva
,
N.
,
Han
,
E.
, and
Saltzman
,
W. M.
, 2002, “
Poly(Ethylene Glycol)-Conjugated PAMAM Dendrimer for Biocompatible, High-Efficiency DNA Delivery
,”
Macromolecules
0024-9297,
35
(
9
), pp.
3456
3462
.
300.
Choi
,
J. S.
,
Nam
,
K.
,
Park
,
J. -Y.
,
Kim
,
J. -B.
,
Lee
,
J. -K.
, and
Park
,
J. -S.
, 2004, “
Enhanced Transfection Efficiency of PAMAM Dendrimer by Surface Modification With L-Arginine
,”
J. Controlled Release
0168-3659,
99
(
3
), pp.
445
456
.
301.
Tuerk
,
C.
, and
Gold
,
L.
, 1990, “
Systematic Evolution of Ligands by Exponential Enrichment: RNA Ligands to Bacteriophage T4 DNA Polymerase
,”
Science
0036-8075,
249
(
4968
), pp.
505
510
.
302.
Ellington
,
A. D.
, and
Szostak
,
J. W.
, 1990, “
Invitro Selection of RNA Molecules That Bind Specific Ligands
,”
Nature (London)
0028-0836,
346
(
6287
), pp.
818
822
.
303.
Hicke
,
B. J.
, and
Stephens
,
A. W.
, 2000, “
Escort Aptamers: A Delivery Service for Diagnosis and Therapy
,”
J. Clin. Invest.
0021-9738,
106
(
8
), pp.
923
928
.
304.
Stoltenburg
,
R.
,
Reinemann
,
C.
, and
Strehlitz
,
B.
, 2007, “
SELEX—A (R)evolutionary Method to Generate High-Affinity Nucleic Acid Ligands
,”
Biomol. Eng.
1389-0344,
24
(
4
), pp.
381
403
.
305.
Famulok
,
M.
, 1999, “
Oligonucleotide Aptamers That Recognize Small Molecules
,”
Curr. Opin. Struct. Biol.
0959-440X,
9
(
3
), pp.
324
329
.
306.
Nimjee
,
S. M.
,
Rusconi
,
C. P.
, and
Sullenger
,
B. A.
, 2005, “
Aptamers: An Emerging Class of Therapeutics
,”
Annu. Rev. Med.
0066-4219,
56
, pp.
555
583
.
307.
Cerchia
,
L.
,
Duconge
,
F.
,
Pestourie
,
C.
,
Boulay
,
J.
,
Aissouni
,
Y.
,
Gombert
,
K.
,
Tavitian
,
B.
,
de Franciscis
,
V.
, and
Libri
,
D.
, 2005, “
Neutralizing Aptamers From Whole-Cell SELEX Inhibit the RET Receptor Tyrosine Kinase
,”
PLoS Biol.
1545-7885,
3
(
4
), p.
e123
.
308.
Morris
,
K. N.
,
Jensen
,
K. B.
,
Julin
,
C. M.
,
Weil
,
M.
, and
Gold
,
L.
, 1998, “
High Affinity Ligands From In Vitro Selection: Complex Targets
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
95
(
6
), pp.
2902
2907
.
309.
Jayasena
,
S. D.
, 1999, “
Aptamers: An Emerging Class of Molecules That Rival Antibodies in Diagnostics
,”
Clin. Chem.
0009-9147,
45
(
9
), pp.
1628
1650
.
310.
Chu
,
T. C.
,
Marks
,
J. W.
,
Lavery
,
L. A.
,
Faulkner
,
S.
,
Rosenblum
,
M. G.
,
Ellington
,
A. D.
, and
Levy
,
M.
, 2006, “
Aptamer: Toxin Conjugates That Specifically Target Prostate Tumor Cells
,”
Cancer Res.
0008-5472,
66
(
12
), pp.
5989
5992
.
311.
Leung
,
D. W.
,
Cachianes
,
G.
,
Kuang
,
W. J.
,
Goeddel
,
D. V.
, and
Ferrara
,
N.
, 1989, “
Vascular Endothelial Growth-Factor is a Secreted Angiogenic Mitogen
,”
Science
0036-8075,
246
(
4935
), pp.
1306
1309
.
312.
Wilting
,
J.
,
Christ
,
B.
, and
Weich
,
H. A.
, 1992, “
The Effects of Growth-Factors on the Day-13 Chorioallantoic Membrane (CAM)—A Study of VEGF-165 and PDGF-BB
,”
Anat. Embryol. (Berl)
0340-2061,
186
(
3
), pp.
251
257
.
313.
Risau
,
W.
, 1997, “
Mechanisms of Angiogenesis
,”
Nature (London)
0028-0836,
386
(
6626
), pp.
671
674
.
314.
Gref
,
R.
,
Minamitake
,
Y.
,
Peracchia
,
M. T.
,
Trubetskoy
,
V.
,
Torchilin
,
V.
, and
Langer
,
R.
, 1994, “
Biodegradable Long-Circulating Polymeric Nanospheres
,”
Science
0036-8075,
263
(
5153
), pp.
1600
1603
.
315.
Murphy
,
G. P.
,
Elgamal
,
A. -A. A.
,
Su
,
S. L.
,
Bostwick
,
D. G.
, and
Holmes
,
E. H.
, 1998, “
Current Evaluation of the Tissue Localization and Diagnostic Utility of Prostate Specific Membrane Antigen
,”
Cancer
0008-543X,
83
(
11
), pp.
2259
2269
.
You do not currently have access to this content.