Advances in nanotechnology are enabling many new diagnostic and therapeutic approaches in cancer. In this review, examples where nanoparticles are employed to induce localized heating within tumors are explored. Approaches to nanoparticle-mediated thermal therapy include absorption of infrared light, radio frequency ablation, and magnetically-induced heating. These approaches have demonstrated high efficacy in animal models, and two are already in human clinical trials.
Issue Section:
Technology Reviews
1.
Center for Disease Control
, 2001, CDC Mortality Data
.2.
American Cancer Society
, 2001, Cancer Facts and Figures 2001, Atlanta, GA.3.
Castrenpersons
, M.
, Schroder
, T.
, Ramo
, O. J.
, Puolakkainen
, P.
, and Lehtonen
, E.
, 1991, “Contact Nd-Yag Laser Potentiates the Tumor-Cell Killing Effect of Hyperthermia
,” Lasers Surg. Med.
0196-8092, 11
(6
), pp. 595
–600
.4.
Chen
, W. R.
, Adams
, R. L.
, Carubelli
, R.
, and Nordquist
, R. E.
, 1997, “Laser-Photosensitizer Assisted Immunotherapy: A Novel Modality for Cancer Treatment
,” Cancer Lett.
0304-3835, 115
(1
), pp. 25
–30
.5.
Waldow
, S. M.
, Morrison
, P. R.
, and Grossweiner
, L. I.
, 1988, “Nd-Yag Laser Induced Hyperthermia in a Mouse-Tumor Model
,” Lasers Surg. Med.
0196-8092, 8
(5
), pp. 510
–514
.6.
Jolesz
, F. A.
, and Hynynen
, K.
, 2002, “Magnetic Resonance Image-Guided Focused Ultrasound Surgery
,” Cancer J.
1528-9117, 8
, pp. S100
–S112
.7.
Seki
, T.
, Wakabayashi
, M.
, Nakagawa
, T.
, Imamura
, M.
, Tamai
, T.
, Nishimura
, A.
, Yamashiki
, N.
, Okamura
, A.
, and Inoue
, K.
, 1999, “Percutaneous Microwave Coagulation Therapy for Patients With Small Hepatocellular Carcinoma—Comparison With Percutaneous Ethanol Injection Therapy
,” Cancer
0008-543X, 85
(8
), pp. 1694
–1702
.8.
Kong
, G.
, Braun
, R. D.
, and Dewhirst
, M. W.
, 2001, “Characterization of the Effect of Hyperthermia on Nanoparticle Extravasation From Tumor Vasculature
,” Cancer Res.
0008-5472, 61
(7
), pp. 3027
–3032
.9.
Pearce
, J.
, and Tomsen
, S.
, 1995, Optical-Thermal Response of Laser-Irradiated Tissue
, Plenum
, New York
.10.
Thomsen
, S.
, 1991, “Pathological Analysis of Photothermal and Photomechanical Effects of Laser-Tissue Interactions
,” Photochem. Photobiol.
0031-8655, 53
(6
), pp. 825
–835
.11.
Van Gemert
, M. J. C.
, Welch
, A. J.
, Pickering
, J. W.
, Tan
, O. T.
, and Gijsbers
, G. H. M.
, 1995, “Wavelengths for Laser Treatment of Port-Wine Stains and Telangiectasia
,” Lasers Surg. Med.
0196-8092, 16
(2
), pp. 147
–155
.12.
Averitt
, R. D.
, Sarkar
, D.
, and Halas
, N. J.
, 1997, “Plasmon Resonance Shifts of Au-Coated Au2S Nanoshells: Insight Into Multicomponent Nanoparticle Growth
,” Phys. Rev. Lett.
0031-9007, 78
(22
), pp. 4217
–4220
.13.
Averitt
, R. D.
, Westcott
, S. L.
, and Halas
, N. J.
, 1999, “Ultrafast Optical Properties of Gold Nanoshells
,” J. Opt. Soc. Am. B
0740-3224, 16
(10
), pp. 1814
–1823
.14.
James
, W. D.
, Hirsch
, L. R.
, West
, J. L.
, O’Neal
, P. D.
, and Payne
, J. D.
, 2007, “Application of INAA to the Build-Up and Clearance of Gold Nanoshells in Clinical Studies in Mice
,” J. Radioanal. Nucl. Chem.
0236-5731, 271
(2
), pp. 455
–459
.15.
O’Neal
, D. P.
, Hirsch
, L. R.
, Halas
, N. J.
, Payne
, J. D.
, and West
, J. L.
, 2004, “Photo-Thermal Tumor Ablation in Mice Using Near Infrared-Absorbing Nanoparticles
,” Cancer Lett.
0304-3835, 209
(2
), pp. 171
–176
.16.
Hashizume
, H.
, Baluk
, P.
, Morikawa
, S.
, Mclean
, J. W.
, Thurston
, G.
, Roberge
, S.
, Jain
, R. K.
, and Mcdonald
, D. M.
, 2000, “Openings Between Defective Endothelial Cells Explain Tumor Vessel Leakiness
,” Am. J. Pathol.
0002-9440, 156
(4
), pp. 1363
–1380
.17.
Hirsch
, L. R.
, Stafford
, R. J.
, Bankson
, J. A.
, Sershen
, S. R.
, Rivera
, B.
, Price
, R. E.
, Hazle
, J. D.
, Halas
, N. J.
, and West
, J. L.
, 2003, “Nanoshell-Mediated Near-Infrared Thermal Therapy of Tumors Under Magnetic Resonance Guidance
,” Proc. Natl. Acad. Sci. U.S.A.
0027-8424, 100
(23
), pp. 13549
–13554
.18.
Bernardi
, R. J.
, Lowery
, A. R.
, Thompson
, P. A.
, Blaney
, S. M.
, and West
, J. L.
, 2008, “Immunonanoshells for Targeted Photothermal Ablation in Medulloblastoma and Glioma: An In Vitro Evaluation Using Human Cell Lines
,” J. Neuro-Oncol.
0167-594X, 86
(2
), pp. 165
–172
.19.
Lowery
, A. R.
, Gobin
, A. M.
, Day
, E. S.
, Halas
, N. J.
, and West
, J. L.
, 2006, “Immunonanoshells for Targeted Photothermal Ablation of Tumor Cells
,” Int. J. Nanomedicine
, 1
(2
), pp. 149
–154
. 1176-911420.
Huang
, X. H.
, El-Sayed
, I. H.
, Qian
, W.
, and El-Sayed
, M. A.
, 2006, “Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods
,” J. Am. Chem. Soc.
0002-7863, 128
(6
), pp. 2115
–2120
.21.
Norman
, R. S.
, Stone
, J. W.
, Gole
, A.
, Murphy
, C. J.
, and Sabo-Attwood
, T. L.
, 2008, “Targeted Photothermal Lysis of the Pathogenic Bacteria, Pseudomonas Aeruginosa, With Gold Nanorods
,” Nano Lett.
1530-6984, 8
(1
), pp. 302
–306
.22.
Zharov
, V. P.
, Galitovskaya
, E. N.
, Johnson
, C.
, and Kelly
, T.
, 2005, “Synergistic Enhancement of Selective Nanophotothermolysis With Gold Nanoclusters: Potential for Cancer Therapy
,” Lasers Surg. Med.
0196-8092, 37
(4
), pp. 329
–329
.23.
Zharov
, V. P.
, Kim
, J. -W.
, Curiel
, D. T.
, and Everts
, M.
, 2005, “Self-Assembling Nanoclusters in Living Systems: Application for Integrated Photothermal Nanodiagnostics and Nanotherapy
,” Nanomedicine
1743-5889, 1
(4
), pp. 326
–345
.24.
Skrabalak
, S. E.
, Au
, L.
, Lu
, X. M.
, Li
, X. D.
, and Xia
, Y. N.
, 2007, “Gold Nanocages for Cancer Detection and Treatment
,” Nanomedicine
1743-5889, 2
(5
), pp. 657
–668
.25.
Melancon
, M. P.
, Lu
, W.
, Yang
, Z.
, Zhang
, R.
, Cheng
, Z.
, Elliot
, A. M.
, Stafford
, J.
, Olson
, T.
, Zhang
, J. Z.
, and Li
, C.
, 2008, “In Vitro and In Vivo Targeting of Hollow Gold Nanoshells Directed at Epidermal Growth Factor Receptor for Photothermal Ablation Therapy
,” Mol. Cancer Ther.
, 7
(6
), pp. 1730
–1739
. 1535-716326.
Niidome
, T.
, Yamagata
, M.
, Okamoto
, Y.
, Akiyama
, Y.
, Takahashi
, H.
, Kawano
, T.
, Katayama
, Y.
, and Niidome
, Y.
, 2006, “PEG-Modified Gold Nanorods With a Stealth Character for In Vivo Applications
,” J. Controlled Release
0168-3659, 114
(3
), pp. 343
–347
.27.
Ito
, A.
, Honda
, H.
, and Kobayashi
, T.
, 2006, “Cancer Immunotherapy Based on Intracellular Hyperthermia Using Magnetite Nanoparticles: A Novel Concept of “Heat-Controlled Necrosis” With Heat Shock Protein Expression
,” Cancer Immunol. Immunother
0340-7004, 55
(3
), pp. 320
–328
.28.
Gilchrist
, R. K.
, Medal
, R.
, Shorey
, W. D.
, Hanselman
, R. C.
, Parrott
, J. C.
, and Taylor
, C. B.
, 1957, “Selective Inductive Heating of Lymph Nodes
,” Ann. Surg.
0003-4932, 146
(4
), pp. 596
–606
.29.
Hergt
, R.
, Andra
, W.
, d’Ambly
, C. G.
, Hilger
, I.
, Kaiser
, W. A.
, Richter
, U.
, and Schmidt
, H. G.
, 1998, “Physical Limits of Hyperthermia Using Magnetite Fine Particles
,” IEEE Trans. Magn.
0018-9464, 34
(5
), pp. 3745
–3754
.30.
Wang
, X. M.
, Gu
, H. C.
, and Yang
, Z. Q.
, 2005, “The Heating Effect of Magnetic Fluids in an Alternating Magnetic Field
,” J. Magn. Magn. Mater.
0304-8853, 293
(1
), pp. 334
–340
.31.
Jordan
, A.
, Scholz
, R.
, Maier-Hauff
, K.
, van Landeghem
, F. K. H.
, Waldoefner
, N.
, Teichgraeber
, U.
, Pinkernelle
, J.
, Bruhn
, H.
, Neumann
, F.
, Thiesen
, B.
, von Deimling
, A.
, and Felix
, R.
, 2006, “The Effect of Thermotherapy Using Magnetic Nanoparticles on Rat Malignant Glioma
,” J. Neuro-Oncol.
0167-594X, 78
(1
), pp. 7
–14
.32.
Johannsen
, M.
, Gneveckow
, U.
, Eckelt
, L.
, Feussner
, A.
, Waldofner
, N.
, Scholz
, R.
, Deger
, S.
, Wust
, P.
, Loening
, S. A.
, and Jordan
, A.
, 2005, “Clinical Hyperthermia of Prostate Cancer Using Magnetic Nanoparticles: Presentation of a New Interstitial Technique
,” Int. J. Hyperthermia
0265-6736, 21
(7
), pp. 637
–647
.33.
Rand
, R. W.
, Snow
, H. D.
, Elliott
, D. G.
, and Snyder
, M.
, 1981, “Thermomagnetic Surgery for Cancer
,” Appl. Biochem. Biotechnol.
0273-2289, 6
(4
), pp. 265
–272
.34.
Hilger
, I.
, Hergt
, R.
, and Kaiser
, W. A.
, 2005, “Towards Breast Cancer Treatment by Magnetic Heating
,” J. Magn. Magn. Mater.
0304-8853, 293
(1
), pp. 314
–319
.35.
Hilger
, I.
, Dietmar
, E.
, Linss
, W.
, Streck
, S.
, and Kaiser
, W. A.
, 2006, “Developments for the Minimally Invasive Treatment of Tumours by Targeted Magnetic Heating
,” J. Phys.: Condens. Matter
0953-8984, 18
(38
), pp. S2951
–S2958
.36.
Ito
, A.
, Kuga
, Y.
, Honda
, H.
, Kikkawa
, H.
, Horiuchi
, A.
, Watanabe
, Y.
, and Kobayashi
, T.
, 2004, “Magnetite Nanoparticle-Loaded Anti-HER2 Immunoliposomes for Combination of Antibody Therapy With Hyperthermia
,” Cancer Lett.
0304-3835, 212
(2
), pp. 167
–175
.37.
Le
, B.
, Shinkai
, M.
, Kitade
, T.
, Honda
, H.
, Yoshida
, J.
, Wakabayashi
, T.
, and Kobayashi
, T.
, 2001, “Preparation of Tumor-Specific Magnetoliposomes and Their Application for Hyperthermia
,” J. Chem. Eng. Jpn.
0021-9592, 34
(1
), pp. 66
–72
.38.
Shinkai
, M.
, Le
, B.
, Honda
, H.
, Yoshikawa
, K.
, Shimizu
, K.
, Saga
, S.
, Wakabayashi
, T.
, Yoshida
, J.
, and Kobayashi
, T.
, 2001, “Targeting Hyperthermia for Renal Cell Carcinoma Using Human Mn Antigen-Specific Magnetoliposomes
,” Jpn. J. Cancer Res.
0910-5050, 92
(10
), pp. 1138
–1145
.39.
Maier-Hauff
, K.
, Rothe
, R.
, Scholz
, R.
, Gneveckow
, U.
, Wust
, P.
, Thiesen
, B.
, Feussner
, A.
, Von Deimling
, A.
, Waldoefner
, N.
, Felix
, R.
, and Jordan
, A.
, 2007, “Intracranial Thermotherapy Using Magnetic Nanoparticles Combined With External Beam Radiotherapy: Results of a Feasibility Study on Patients With Glioblastoma Multiforme
,” J. Neuro-Oncol.
0167-594X, 81
(1
), pp. 53
–60
.40.
Curley
, S. A.
, 2001, “Radiofrequency Ablation of Malignant Liver Tumors
,” Oncologist
1083-7159, 6
(1
), pp. 14
–23
.41.
Barnes
, F.
, and Greenebaum
, B.
, 2006, “Bioengineering and Biophysical Aspects of Electromagnetic Fields
,” Handbook of Biological Effects of Electromagnetic Fields
, 3rd ed., CRC
, Boca Raton, FL
.42.
Cardinal
, J.
, Klune
, J. R.
, Chory
, E.
, Jeyabalan
, G.
, Kanzius
, J. S.
, Nalesnik
, M.
, and Geller
, D. A.
, 2008, “Noninvasive Radiofrequency Ablation of Cancer Targeted by Gold Nanoparticles
,” Surgery (St. Louis)
0039-6060, 144
(2
), pp. 125
–132
.43.
Gannon
, C.
, Patra
, C.
, Bhattacharya
, R.
, Mukherjee
, P.
, and Curley
, S.
, 2008, “Intracellular Gold Nanoparticles Enhance Non-Invasive Radiofrequency Thermal Destruction of Human Gastrointestinal Cancer Cells
,” J. Nanobiotechnology
, 6
(1
). 1477-315544.
Gannon
, C. J.
, Cherukuri
, P.
, Yakobson
, B. I.
, Cognet
, L.
, Kanzius
, J. S.
, Kittrell
, C.
, Weisman
, R. B.
, Pasquali
, M.
, Schmidt
, H. K.
, Smalley
, R. E.
, and Curley
, S. A.
, 2007, “Carbon Nanotube-Enhanced Thermal Destruction of Cancer Cells in a Noninvasive Radiofrequency Field
,” Cancer
0008-543X, 110
(12
), pp. 2654
–2665
.45.
Roschmann
, P.
, 1987, “Radiofrequency Penetration and Absorption in the Human Body-Limitations to High-Field Whole-Body Nuclear Magnetic Resonance Imaging
,” Med. Phys.
0094-2405, 14
(6
), pp. 922
–931
.46.
Gobin
, A. M.
, 2007, “Photothermal Therapies Using Near Infrared Absorbing Nanoparticles
,” Ph.D. thesis, Rice University, Houston, TX.47.
Gobin
, A. M.
, Lee
, M. H.
, Halas
, N. J.
, James
, W. D.
, Drezek
, R. A.
, and West
, J. L.
, 2007, “Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy
,” Nano Lett.
1530-6984, 7
(7
), pp. 1929
–1934
.Copyright © 2009
by American Society of Mechanical Engineers
You do not currently have access to this content.