Clinically, orthopaedic fracture fixation constructs are mounted using screws inserted into cancellous bone, while biomechanical studies are increasingly using commercially available synthetic bones. The goal of this study was to examine the effect of screw pullout rate on cancellous bone screw purchase strength in synthetic cancellous bone. Sixty synthetic cancellous bone cubes (40×40×40mm3) each had one orthopaedic cancellous bone screw (major diameter=6.5mm) inserted to a depth of 30mm. Screws were extracted to obtain outcome measures of failure force, failure shear stress, failure energy, failure displacement, resistance force, and removal energy. The ten test groups (n=6 cubes per group) had screws extracted at pullout rates of 1mmmin, 2.5mmmin, 5mmmin, 7.5mmmin, 10mmmin, 20mmmin, 30mmmin, 40mmmin, 50mmmin, and 60mmmin. The aggregate average results for failure force, failure stress, failure energy, failure displacement, resistance force, and postfailure removal energy for combined pullout rates were, respectively, 984.8±63.9N, 3.5±0.2MPa, 298.3±41.7J, 0.53±0.08mm, 453.8±19.6N, and 5420.1±489.7J. Most statistical differences (40 of 47) involved either the 5mmmin or the 60mmmin rates being compared to other rates. Failure force, failure stress, and resistance force increased and were highly linearly correlated with pullout rate (R2=0.78, 0.76, and 0.74, respectively). Failure energy, failure displacement, and removal energy were relatively unchanged over the pullout range tested, yielding low correlation coefficients (R2<0.05). Failure force, failure stress, and resistance force were affected by bone screw pullout rate in synthetic cancellous bone, while failure energy, failure displacement, and removal energy remained unchanged. This is the first study to perform an extensive investigation of cancellous bone screw pullout rate in synthetic cancellous bone.

1.
Kuokkanen
,
H.
,
Korkala
,
O.
,
Antti-Poika
,
I.
,
Tolonen
,
J.
,
Lehtimaki
,
M. Y.
, and
Silvennoinen
,
T.
, 1991, “
Three Cancellous Bone Screws Versus a Screw-Angle Plate in the Treatment of Garden I And II Fractures of the Femoral neck
,”
Acta Orthop. Belg.
0001-6462,
57
(
1
), pp.
53
57
.
2.
Benterud
,
J. G.
,
Alho
,
A.
, and
Hoiseth
,
A.
, 1994, “
Implant/Bone Constructs in Femoral Neck Osteotomy. An Autopsy Study
,”
Arch. Orthop. Trauma Surg.
0936-8051,
113
(
2
), pp.
97
100
.
3.
Tencer
,
A. F.
, and
Johnson
,
K. D.
, 1994, “
Lower Extremity Fixation
,”
Biomechanics in Orthopedic Trauma
,
JB Lippincott
,
Philadelphia, PA
, pp.
249
274
.
4.
R. W.
Bucholz
and
J. D.
Heckman
, eds., 2001,
Rockwood and Green’s Fractures in Adults
, 5th ed.,
Lippincott, Williams, and Wilkins
,
Philadelphia, PA
.
5.
Tidermark
,
J.
,
Zethraeus
,
N.
,
Svensson
,
O.
,
Tornkvist
,
H.
, and
Ponzer
,
S.
, 2002, “
Quality of Life Related to Fracture Displacement Among Elderly Patients With Femoral Neck Fractures Treated With Internal Fixation
,”
J. Orthop. Trauma
0890-5339,
16
(
1
), pp.
34
38
.
6.
Lee
,
K. B.
,
Howe
,
T. S.
, and
Chang
,
H. C.
, 2004, “
Cancellous Screw Fixation for Femoral Neck Fractures: One Hundred and Sixteen Patients
,”
Ann. Acad. Med. Singapore
0304-4602,
33
(
2
), pp.
248
251
.
7.
Chen
,
W. C.
,
Yu
,
S. W.
,
Tseng
,
I. C.
,
Su
,
J. Y.
,
Tu
,
Y. K.
, and
Chen
,
W. J.
, 2005, “
Treatment of Undisplaced Femoral Neck Fractures in the Elderly
,”
J. Trauma: Inj., Infect., Crit. Care
1079-6061,
58
(
5
), pp.
1035
1039
.
8.
Jarit
,
G. J.
,
Kummer
,
F. J.
,
Gibber
,
M. J.
, and
Egol
,
K. A.
, 2006, “
A Mechanical Evaluation of Two Fixation Methods Using Cancellous Screws for Coronal Fractures of the Lateral Condyle of the Distal Femur (OTA Type 33B)
,”
J. Orthop. Trauma
0890-5339,
20
(
4
), pp.
273
276
.
9.
Krastman
,
P.
,
van den Bent
,
R. P.
,
Krijnen
,
P.
, and
Schipper
,
I. B.
, 2006, “
Two Cannulated Hip Screws for Femoral Neck Fractures: Treatment of Choice Or Asking for Trouble?
,”
Arch. Orthop. Trauma Surg.
0936-8051,
126
(
5
), pp.
297
303
.
10.
Cheal
,
E. J.
,
Spector
,
M.
, and
Hayes
,
W. C.
, 1992, “
Role of Loads and Prosthesis Material Properties on the Mechanics of the Proximal Femur After Total Hip Arthroplasty
,”
J. Orthop. Res.
0736-0266,
10
, pp.
405
422
.
11.
Cusick
,
R. P.
,
Lucas
,
G. L.
,
McQueen
,
D. A.
, and
Graber
,
C. D.
, 2000, “
Construct Stiffness of Different Fixation Methods for Supracondylar Femoral Fractures Above Total Knee Prostheses
,”
Am. J. Orthop.
1078-4519,
29
(
9
), pp.
695
699
.
12.
Heiner
,
A. D.
, and
Brown
,
T. D.
, 2001, “
Structural Properties of a New Design of Composite Replicate Femurs and Tibias
,”
J. Biomech.
0021-9290,
34
, pp.
773
781
.
13.
Heiner
,
A. D.
, and
Brown
,
T. D.
, 2003, “
Structural Properties of an Improved Redesign of Composite Replicate Femurs and Tibias
,”
Trans 29th Society for Biomaterials
,
Reno, NV
, Apr. 30–May 3, Vol.
26
, p.
702
.
14.
Peindl
,
R. D.
,
Zura
,
R. D.
,
Vincent
,
A.
,
Coley
,
E. R.
,
Bosse
,
M. J.
, and
Sims
,
S. H.
, 2004, “
Unstable Proximal Extraarticular Tibia Fractures:, A. Biomechanical Evaluation of Four Methods of Fixation
,”
J. Orthop. Trauma
0890-5339,
18
(
8
), pp.
540
545
.
15.
Zdero
,
R.
,
Walker
,
R.
,
Waddell
,
J. P.
, and
Schemitsch
,
E. H.
, 2008, “
Biomechanical Evaluation of Periprosthetic Femoral Fracture Fixation
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355, Vol.
90
(
5
), pp.
1068
1077
.
16.
Pacific Research Laboratories, Manufacturer’s Online Product Catalog, www.sawbones.comwww.sawbones.com.
17.
ASTM F 543-07
, “
Standard Specification and Test Methods for Metallic Medical Bone Screws
.”
18.
Koranyi
,
E.
,
Bowman
,
C. E.
,
Knecht
,
C. D.
, and
Janssen
,
M.
, 1970, “
Holding Power of Orthopaedic Screws in Bone
,”
Clin. Orthop. Relat. Res.
0009-921X,
72
, pp.
283
286
.
19.
Frandsen
,
P. A.
,
Christoffersen
,
H.
, and
Madsen
,
T.
, 1984, “
Holding Power of Different Screws in the Femoral Head. A Study in Human Cadaver Hips
,”
Acta Orthop. Scand.
0001-6470,
55
(
3
), pp.
349
351
.
20.
Yovich
,
J. V.
,
Turner
,
A. S.
, and
Smith
,
F. W.
, 1985, “
Holding Power of Orthopedic Screws in Equine Third Metacarpal and Metatarsal Bones; Part 2. Adult Horse Bone
,”
Vet. Surg.
0161-3499,
14
, pp.
230
234
.
21.
Zindrick
,
M. R.
,
Wiltse
,
L. L.
,
Widell
,
E. H.
,
Thomas
,
J. C.
,
Holland
,
R.
,
Field
,
B. T.
, and
Spencer
,
C. W.
, 1986, “
A Biomechanical Study of Intrapeduncular Screw Fixation in the Lumbosacral Spine
,”
Clin. Orthop. Relat. Res.
0009-921X,
203
, pp.
99
112
.
22.
Kleeman
,
B. C.
,
Toshitsugu
,
T.
,
Gerhart
,
T. N.
, and
Hayes
,
W. C.
, 1992, “
Holding Power and Reinforcement of Cancellous Screws in Human Bone
,”
Clin. Orthop. Relat. Res.
0009-921X,
284
, pp.
260
266
.
23.
Firoozbakhsh
,
K. K.
,
DeCoster
,
T. A.
, and
Moneim
,
M. S.
, 1994, “
Effect of Cyclic Loading on the Holding Power of Surgical Screws
,”
Orthopedics
0147-7447,
17
(
7
), pp.
607
611
.
24.
Chapman
,
J. R.
,
Harrington
,
R. M.
,
Lee
,
K. M.
,
Anderson
,
P. A.
,
Tencer
,
A. F.
, and
Kowalski
,
D.
, 1996, “
Factors Affecting the Pullout Strength of Cancellous Bone Screws
,”
ASME J. Biomech. Eng.
0148-0731,
118
, pp.
391
398
.
25.
An
,
Y. H.
, and
Draughn
,
R. A.
, 1999, “
Mechanical Properties and Testing Methods of Bone
,”
Animal Models in Orthopaedic Research
,
Y. H.
An
and
R. J.
Friedman
, eds.,
CRC
,
Boca Raton, FL
, pp.
139
163
.
26.
Harnroongroj
,
T.
, and
Techataweewan
,
A.
, 1999, “
Determination of the Role of the Cancellous Bone in Generation of Screw Holding Power at Metaphysis
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
14
(
5
), pp.
364
366
.
27.
Lenzner
,
A.
,
Kaur
,
I.
,
Haviko
,
T.
,
Sogel
,
V.
,
Gapejeva
,
J.
,
Ereline
,
J.
, and
Paasuke
,
M.
, 1999, “
Impaction Bone-Grafting Increases the Holding Power of Cancellous Screws in the Femoral Head: A Pull-Out Study in Human Cadaver Hips
,”
Acta Orthop. Scand.
0001-6470,
70
(
1
), pp.
25
28
.
28.
Murphy
,
T. P.
,
Hill
,
C. M.
,
Kapatkin
,
A. S.
,
Radin
,
A.
,
Shofer
,
F. S.
, and
Smith
,
G. K.
, 2001, “
Pullout Properties of 3.5-mm AO/ASIF Self-Tapping and Cortex Screws in a Uniform Synthetic Material and in Canine Bone
,”
Vet. Surg.
0161-3499,
30
, pp.
253
260
.
29.
Westmoreland
,
G. L.
,
McLaurin
,
T. M.
, and
Hutton
,
W. C.
, 2002, “
Screw Pullout Strength: A Biomechanical Comparison of Large-Fragment and Small-Fragment Fixation in the Tibial Plateau
,”
J. Orthop. Trauma
0890-5339,
16
(
3
), pp.
178
181
.
30.
Inceoglu
,
S.
,
McLain
,
R. F.
,
Cayli
,
S.
,
Kilincer
,
C.
, and
Ferrara
,
L.
, 2004, “
Stress Relaxation of Bone Significantly Affects the Pull-Out Behavior of Pedicle Screws
,”
J. Orthop. Res.
0736-0266,
22
, pp.
1243
1247
.
31.
Johnson
,
N. L.
,
Galuppo
,
L. D.
,
Stover
,
S. M.
, and
Taylor
,
K. T.
, 2004, “
An in Vitro Biomechanical Comparison of the Insertion Variables and Pullout Mechanical Properties of AO 6.5-mm Standard Cancellous and 7.3-mm Self-Tapping, Cannulated Bone Screws in Foal Femoral Bone
,”
Vet. Surg.
0161-3499,
33
(
6
), pp.
681
690
.
32.
Steeves
,
M.
,
Stone
,
C.
,
Mogaard
,
J.
, and
Byrne
,
S.
, 2005, “
How Pilot-Hole Size Affects Bone-Screw Pullout Strength in Human Cadaveric Cancellous Bone
,”
Can. J. Surg.
0008-428X,
48
(
3
), pp.
207
212
.
33.
Battula
,
S.
,
Schoenfeld
,
A.
,
Vrabec
,
G.
, and
Njus
,
G. O.
, 2006, “
Experimental Evaluation of the Holding Power/Stiffness of the Self-Tapping Bone Screws in Normal and Osteoporotic Bone Material
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
21
, pp.
533
537
.
34.
Shirazi-Adl
,
A.
,
Dammak
,
M.
, and
Zukor
,
D. J.
, 1994, “
Fixation Pull-Out Response Measurement of Bone Screws and Porous-Surfaced Posts
,”
J. Biomech.
0021-9290,
27
(
10
), pp.
1249
1258
.
35.
Inceoglu
,
S.
,
Ehlert
,
M.
,
Akbay
,
A.
, and
McLain
,
R. F.
, 2006, “
Axial Cyclic Behavior of the Bone-Screw Interface
,”
Med. Eng. Phys.
1350-4533,
28
, pp.
888
893
.
36.
Zdero
,
R.
,
Olsen
,
M.
,
Bougherara
,
H.
, and
Schemitsch
,
E.
, 2008, “
Cancellous Bone Screw Purchase: A Comparison of Synthetic Femurs, Human Femurs, and Finite Element Analysis
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
222
, in press.
37.
Cristofolini
,
L.
,
Viceconti
,
M.
,
Cappello
,
A.
, and
Toni
,
A.
, 1996, “
Mechanical Validation of Whole Bone Composite Femur Models
,”
J. Biomech.
0021-9290,
29
(
4
), pp.
525
535
.
38.
Cristofolini
,
L.
, and
Viceconti
,
M.
, 2000, “
Mechanical Validation of Whole Bone Composite Tibia Models
,”
J. Biomech.
0021-9290,
33
(
3
), pp.
279
288
.
39.
Papini
,
M.
,
Zdero
,
R.
,
Schemitsch
,
E. H.
, and
Zalzal
,
P.
, 2007, “
The Biomechanics of Human Femurs in Axial and Torsional Loading: Comparison of Finite Element Analysis, Human Cadaveric Femurs, and Synthetic Femurs
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
1
), pp.
12
19
.
40.
Gausepohl
,
T.
,
Mohring
,
R.
,
Pennig
,
D.
, and
Koebke
,
J.
, 2001, “
Fine Thread Versus Coarse Thread: A Comparison of the Maximum Holding Power
,”
Injury
0020-1383,
32
, pp.
SD1
SD7
.
41.
Asnis
,
S. E.
,
Ernberg
,
J. J.
,
Bostrom
,
M. P. G.
,
Wright
,
T. M.
,
Harrington
,
R. M.
,
Tencer
,
A.
, and
Peterson
,
M.
, 1996, “
Cancellous Bone Screw Thread Design and Holding Power
,”
J. Orthop. Trauma
0890-5339,
10
(
7
), pp.
462
469
.
42.
Goel
,
V.
,
Dick
,
D.
,
Rengachary
,
S.
,
Garg
,
I.
, and
Ebraheim
,
N.
, 2003, “
Tapered Pedicle Screw Pull Out Strengths: Effect of Increasing Screw Height Outside the Pedicle
,”
Summer Bioengineering Conference
,
Sonesta Beach Resort in Key Biscayne, FL
, June 25–29, pp.
0117
0118
.
43.
Pankovich
,
A. M.
, and
Elstrom
,
J. A.
, 2006, “
Intracapsular Fractures of the Femoral Head
,”
Handbook of Fractures
,
J. A.
Elstrom
,
W. W.
Virkus
, and
A. M.
Pankovich
, eds.,
McGraw-Hill
,
New York
, pp.
264
280
.
44.
Zand
,
M. S.
,
Goldstein
,
S. A.
, and
Matthews
,
L. S.
, 1983, “
Fatigue Failure of Cortical Bone Screws
,”
J. Biomech.
0021-9290,
10
(
5
), pp.
305
311
.
45.
Firoozbakhsh
,
K. K.
,
DeCoster
,
T. A.
, and
Moneim
,
M. S.
, 1994, “
Effect of Cyclical Loading on the Holding Power of Surgical Screws
,”
Orthopedics
0147-7447,
17
(
7
), pp.
607
611
.
46.
Rodriguez-Olaverri
,
J. C.
,
Hasharoni
,
A.
,
DeWal
,
H.
,
Nuzzo
,
R. M.
,
Kummer
,
F. J.
, and
Errico
,
T. J.
, 2005, “
The Effect of End Screw Orientation on the Stability of Anterior Instrumentation in Cyclic Lateral Bending
,”
The Spine Journal
,
5
, pp.
554
557
.
You do not currently have access to this content.