In cementless total hip arthroplasty, a fair amount of interfacial gap exists between the femoral stem and the bone. However, the effect of these gaps on the mechanical stability of the stem is poorly understood. In this paper, a finite element model with various interfacial gap definitions is used to quantify the effect of interfacial gaps on the primary stability of a Versys Fiber Metal Taper stem under stair climbing loads. In the first part, 500 random interfacial gap definitions were simulated. The resulting micromotion was approximately inversely proportional to the contact ratio, and the variance of the micromotion was greater with a lower contact ratio. Moreover, when the magnitude of the micromotion was compared between the gap definitions that had contact at a specific site and those that had no contact at that site, it was found that gaps located in the proximal-medial region of the stem surface had the most important effect on the micromotion. In a second trial, 17 gap definitions mimicking a gap pattern that has been observed experimentally were simulated. For a given contact ratio, the micromotion observed in the second trial was lower than the average result of those in the first, where the gaps were placed randomly. In either trial, when the contact ratio was higher than 40%, the micromotion showed no significant difference (first trial) or a gentle slope (0.24μm% in the second trial) in relation to the contact ratio. Considering the reported contact ratios for properly implanted stems, variations in the amount of interfacial gap would not likely cause a drastic difference in micromotion, and this effect could be easily overshadowed by other clinical factors. In conclusion, differences in interfacial gaps are not expected to have a noticeable effect on the clinical micromotion of this cementless stem.

1.
Macari
,
G. S.
,
Kassim
,
R. A.
,
Yoon
,
P.
, and
Saleh
,
K. J.
, 2003, “
The Cementless Femoral Stem Revisited
,”
J. South Orthop. Assoc.
1059-1052,
12
(
2
), pp.
83
89
.
2.
Wu
,
L. D.
,
Hahne
,
H. J.
, and
Hassenpflug
,
J.
, 2004, “
The Dimensional Accuracy of Preparation of Femoral Cavity in Cementless Total Hip Arthroplasty
,”
J. Zhejiang Univ., Sci.
1009-3095,
5
(
10
), pp.
1270
1278
.
3.
Howard
,
J. L.
,
Hui
,
A. J.
,
Bourne
,
R. B.
,
McCalden
,
R. W.
,
MacDonald
,
S. J.
, and
Rorabeck
,
C. H.
, 2004, “
A Quantitative Analysis of Bone Support Comparing Cementless Tapered and Distal Fixation Total Hip Replacements
,”
J. Arthroplasty
0883-5403,
19
(
3
), pp.
266
273
.
4.
Sychterz
,
C. J.
,
Claus
,
A. M.
, and
Engh
,
C. A.
, 2002, “
What We Have Learned About Long-Term Cementless Fixation From Autopsy Retrievals
,”
Clin. Orthop. Relat. Res.
0009-921X,
405
(
12
), pp.
79
91
.
5.
Schmalzried
,
T.
,
Jasty
,
M.
, and
Harris
,
W.
, 1992, “
Periprosthetic Bone Loss in Total Hip Arthroplasty: Polyethylene Wear Debris and the Concept of the Effective Joint Space
,”
J. Bone Joint Surg. Br.
0301-620X,
74
(
6A
), pp.
849
863
.
6.
Bobyn
,
J.
,
Pilliar
,
R.
,
Cameron
,
H.
, and
Weatherly
,
G.
, 1981, “
Osteogenic Phenomena Across Endosteal Bone-Implant Spaces With Porous Surfaced Intramedullary Implants
,”
Acta Orthop. Scand.
0001-6470,
52
(
2
), pp.
145
153
.
7.
Botticelli
,
D.
,
Berglundh
,
T.
, and
Lindhe
,
J.
, 2004, “
Resolution of Bone Defects of Varying Dimension and Configuration in the Marginal Portion of the Peri-Implant Bone: An Experimental Study in the Dog
,”
J. Clin. Periodontol.
0303-6979,
31
(
4
), pp.
309
317
.
8.
Cameron
,
H.
,
Pilliar
,
R.
, and
Macnab
,
I.
, 1976, “
The Rate of Bone Ingrowth Into Porous Metal
,”
J. Biomed. Mater. Res.
0021-9304,
10
(
2
), pp.
295
302
.
9.
Pilliar
,
R.
,
Lee
,
J.
, and
Maniatopoulos
,
C.
, 1986, “
Observations on the Effect of Movement on Bone Ingrowth Into Porous-Surfaced Implants
,”
Clin. Orthop. Relat. Res.
0009-921X,
208
, pp.
108
113
.
10.
Baleani
,
M.
,
Cristofolini
,
L.
, and
Toni
,
A.
, 2000, “
Initial Stability of a New Hybrid Fixation Hip Stem: Experimental Measurement of Implant-Bone Micromotion Under Torsional Load in Comparison With Cemented and Cementless Stems
,”
J. Biomed. Mater. Res.
0021-9304,
50
(
4
), pp.
605
615
.
11.
Bhagia
,
U.
,
Corpe
,
R.
,
Steflik
,
D.
,
Young
,
T.
, and
Schnars
,
J.
, 2001, “
Cementless S-Rom Femoral Component: Effect of Stem Length on Stability After Extended Proximal Femoral Osteotomy
,”
J. South Orthop. Assoc.
1059-1052,
10
(
1
), pp.
6
11
.
12.
Buhler
,
D. W.
,
Berlemann
,
U.
,
Lippuner
,
K.
,
Jaeger
,
P.
, and
Nolte
,
L. P.
, 1997, “
Three-Dimensional Primary Stability of Cementless Femoral Stems
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
12
(
2
), pp.
75
86
.
13.
Cristofolini
,
L.
,
Teutonico
,
A. S.
,
Monti
,
L.
,
Cappello
,
A.
, and
Toni
,
A.
, 2003, “
Comparative In Vitro Study of the Long Term Performance of Cemented Hip Stems: Validation of a Protocol to Discriminate Between ‘Good’ and ‘Bad’ Designs
,”
J. Biomech.
0021-9290,
36
, pp.
1603
1615
.
14.
Decking
,
J.
,
Gerber
,
A.
,
Kranzlein
,
J.
,
Meurer
,
A.
,
Bohm
,
B.
, and
Plitz
,
W.
, 2004, “
The Primary Stability Between Manual and Robot Assisted Implantation of Hip Prostheses: A Biomechanical Study on Synthetic Femurs
,”
Z. Orthop. Ihre Grenzgeb
0044-3220,
142
(
3
), pp.
309
313
.
15.
Gortz
,
W.
,
Nagerl
,
U. V.
,
Nagerl
,
H.
, and
Thomsen
,
M.
, 2002, “
Spatial Micromovements of Uncemented Femoral Components After Torsional Loads
,”
ASME J. Biomech. Eng.
0148-0731,
124
(
6
), pp.
706
713
.
16.
Speirs
,
A. D.
,
Slomczykowski
,
M. A.
,
Orr
,
T. E.
,
Siebenrock
,
K.
, and
Nolte
,
L. P.
, 2000, “
Three-Dimensional Measurement of Cemented Femoral Stem Stability: An In Vitro Cadaver Study
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
15
(
4
), pp.
248
255
.
17.
Ando
,
M.
,
Imura
,
S.
,
Omori
,
H.
,
Okumura
,
Y.
,
Bo
,
A.
, and
Baba
,
H.
, 1999, “
Nonlinear Three-Dimensional Finite Element Analysis of Newly Designed Cementless Total Hip Stems
,”
Artif. Organs
0160-564X,
23
(
4
), pp.
339
346
.
18.
Fernandes
,
P. R.
,
Folgado
,
J.
, and
Ruben
,
R. B.
, 2004, “
Shape Optimization of a Cementless Hip Stem for a Minimum of Interface Stress and Displacement
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
7
(
1
), pp.
51
61
.
19.
Wong
,
A. S.
,
Isaac
,
G.
,
New
,
A. M. R.
, and
Taylor
,
M.
, 2003, “
Influence of Bone Quality on the Initial Stability of Cementless Hip Stem in Total Hip Arthroplasty
,” 2003 Summer Bioengineering Conference, Sonesta Beach Resort, Key Biscayne, FL, Jun. 25–29, pp.
25
26
.
20.
Bargar
,
W.
,
Bauer
,
A.
, and
Borner
,
M.
, 1998, “
Primary and Revision Total Hip Replacement Using the Robodoc System
,”
Clin. Orthop. Relat. Res.
0009-921X,
354
, pp.
82
91
.
21.
Birke
,
A.
,
Reichel
,
H.
,
Hein
,
W.
,
Schietsch
,
U.
,
Hube
,
R.
,
Bernstein
,
A.
, and
Kruger
,
T.
, 2000, “
ROBODOC: A Path Into the Future of Hip Endoprosthetics or an Investment Error?
,”
Z. Orthop. Ihre Grenzgeb
0044-3220,
138
(
5
), pp.
395
401
.
22.
Thomsen
,
M. N.
,
Breusch
,
S. J.
,
Aldinger
,
P. R.
,
Gortz
,
W.
,
Lahmer
,
A.
,
Honl
,
M.
,
Birke
,
A.
, and
Nogerl
,
H.
, 2002, “
Robotically-Milled Bone Cavities: A Comparison With Hand Broaching in Different Types of Cementless Hip Stems
,”
Acta Orthop. Scand.
0001-6470,
73
(
4
), pp.
379
385
.
23.
Park
,
Y.
,
Shin
,
H.
,
Choi
,
D.
,
Albert
,
C.
, and
Yoon
,
Y. S.
, 2008, “
Primary Stability of Cementless Stem in THA Improved With Reduced Interfacial Gaps
,”
ASME J. Biomech. Eng.
0148-0731,
130
(
2
), p.
021008
.
24.
Romero
,
F.
,
Amirouche
,
F.
,
Aram
,
L.
, and
Gonzalez
,
M. H.
, 2007, “
Experimental and Analytical Validation of a Modular Acetabular Prosthesis in Total Hip Arthroplasty
,”
J. Orthop. Surg.
,
2
, 7.
25.
Amirouche
,
F.
,
Romero
,
F.
,
Gonzalez
,
M.
, and
Aram
,
L.
, 2008, “
Study of Micromotion in Modular Acetabular Components During Gait and Subluxation: A Finite Element Investigation
,”
ASME J. Biomech. Eng.
0148-0731,
130
(
2
), p.
021002
.
26.
Viceconti
,
M.
,
Muccini
,
R.
,
Bernakiewicz
,
M.
,
Baleani
,
M.
, and
Cristofolini
,
L.
, 2000, “
Large-Sliding Contact Elements Accurately Predict Levels of Bone-Implant Micromotion Relevant to Osseointegration
,”
J. Biomech.
0021-9290,
33
(
12
), pp.
1611
1618
.
27.
Viceconti
,
M.
,
Monti
,
L.
,
Muccini
,
R.
,
Bernakiewicz
,
M.
, and
Toni
,
A.
, 2001, “
Even a Thin Layer of Soft Tissue May Compromise the Primary Stability of Cementless Hip Stems
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
16
(
9
), pp.
765
775
.
28.
Viceconti
,
M.
,
Brusi
,
G.
,
Pancanti
,
A.
, and
Cristofolini
,
L.
, 2006, “
Primary Stability of an Anatomical Cementless Hip Stem: A Statistical Analysis
,”
J. Biomech.
0021-9290,
39
(
7
), pp.
1169
1179
.
29.
Berzins
,
A.
,
Sumner
,
D. R.
,
Wasielewski
,
R. C.
, and
Galante
,
J. O.
, 1996, “
Impacted Particulate Allograft for Femoral Revision Total Hip Arthroplasty: In Vitro Mechanical Stability and Effects of Cement Pressurization
,”
J. Arthroplasty
0883-5403,
11
(
5
), pp.
500
506
.
30.
Heller
,
M. O.
,
Bergmann
,
G.
,
Kassi
,
J. P.
,
Claes
,
L.
,
Haas
,
N. P.
, and
Duda
,
G. N.
, 2005, “
Determination of Muscle Loading at the Hip Joint for Use in Pre-Clinical Testing
,”
J. Biomech.
0021-9290,
38
(
5
), pp.
1155
1163
.
31.
Gruen
,
T. A.
,
McNeice
,
G. M.
, and
Amstutz
,
H. C.
, 1979, “
‘Modes of Failure’ of Cemented Stem-Type Femoral Components: A Radiographic Analysis of Loosening
,”
Clin. Orthop. Relat. Res.
0009-921X,
141
(
6
), pp.
17
27
.
32.
Nogler
,
M.
,
Polikeit
,
A.
,
Wimmer
,
C.
,
Bruckner
,
A.
,
Ferguson
,
S. J.
, and
Krismer
,
M.
, 2004, “
Primary Stability of a Robodoc Implanted Anatomical Stem Versus Manual Implantation
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
19
(
2
), pp.
123
129
.
33.
Prymka
,
M.
,
Vogiatzis
,
M.
, and
Hassenpflug
,
J.
, 2004, “
Primary Rotatory Stability of Hip Endoprostheses Stems After Manual and Robot Assisted Implantation
,”
Z. Orthop. Ihre Grenzgeb
0044-3220,
142
(
3
), pp.
303
308
.
You do not currently have access to this content.