To establish a finite element model that reflects the geometric characteristics of the normal anterior cruciate ligament (ACL), explore the approaches to model knee joint ligaments and analyze the mechanics of the model. A healthy knee joint specimen was subjected to three-dimensional laser scanning, and then a three-dimensional finite element model for the normal ACL was established using three-dimensional finite element software. Based on the model, the loads of the ACL were simulated to analyze the stress-strain relationship and stress distribution of the ACL. Using the ABAQUS software, a three-dimensional finite element model was established. The whole model contained 22,125 nodes and 46,411 units. In terms of geometric similarity and mesh precision, this model was superior to previous finite element models for the ACL. Through the introduction of material properties, boundary conditions, and loads, finite elements were analyzed and computed successfully. The relationship between overall nodal forces and the displacement of the ACL under anterior loads of the tibia was determined. In addition, the nephogram of the ACL stress spatial distribution was obtained. A vivid, three-dimensional model of the knee joint was established rapidly by using reverse engineering technology and laser scanning. The three-dimensional finite element method can be used for the ACL biomechanics research. The method accurately simulated the ACL stress distribution with the tibia under anterior loads, and the computational results were of clinical significance.

1.
Griffin
,
L. Y.
,
Agel
,
J.
,
Albohm
,
M. J.
,
Arendt
,
E. A.
,
Dick
,
R. W.
,
Garrett
,
W. E.
,
Garrick
,
J. G.
,
Hewett
,
T. E.
,
Huston
,
L.
,
Ireland
,
M. L.
,
Johnson
,
R. J.
,
Kibler
,
W. B.
,
Lephart
,
S.
,
Lewis
,
J. L.
,
Lindenfeld
,
T. N.
,
Mandelbaum
,
B. R.
,
Marchak
,
P.
,
Teitz
,
C. C.
, and
Wojtys
,
E. M.
, 2000, “
Noncontact Anterior Cruciate Ligament Injuries: Risk Factors and Prevention Strategies
,”
J. Am. Acad. Orthop. Surg.
1067-151X,
8
, pp.
141
150
.
2.
Bendjaballah
,
M. Z.
,
Shirazi-Adl
,
A.
, and
Zukor
,
D. J.
, 1998, “
Biomechanics Response of the Passive Human Knee Joint Under Anterior-Posterior Forces
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
13
, pp.
625
633
.
3.
Kanamori
,
A.
,
Sakane
,
M.
,
Zeminski
,
J.
,
Rudy
,
T. W.
, and
Woo
,
S. L.-Y.
, 2000, “
In-Situ Force in Medial and Lateral Structures of Intact and ACL Deficient Knees
,”
J. Orthop. Sci.
0949-2658,
5
, pp.
567
571
.
4.
Ahmed
,
A. M.
,
Burke
,
D. L.
,
Duncan
,
N. A.
, and
Chan
,
K. H.
, 1992, “
Ligament Tension Pattern in the Flexed Knee in Combined Passive Anterior Displacement and Axial Rotation
,”
J. Orthop. Res.
0736-0266,
10
, pp.
854
867
.
5.
Beynnon
,
B. D.
, and
Fleming
,
B. C.
, 1998, “
Anterior Cruciate Ligament Strain In-Vivo: A Review of Previous Work
,”
J. Biomech.
0021-9290,
31
, pp.
519
525
.
6.
Holden
,
J. P.
,
Grood
,
E. S.
,
Korvick
,
D. L.
,
Cummings
,
J. F.
,
Butler
,
D. L.
, and
Bylski-Austrow
,
D. I.
, 1994, “
In Vivo Forces in the Anterior Cruciate Ligament: Direct Measurements During Walking and Trotting in a Quadruped
,”
J. Biomech.
0021-9290,
27
, pp.
517
526
.
7.
Fleming
,
B. C.
,
Beynnon
,
B. D.
,
Renstrom
,
P. A.
,
Johnson
,
R. J.
,
Nichols
,
C. E.
,
Peura
,
G. D.
, and
Uh
,
B. S.
, 1999, “
The Strain Behavior of the Anterior Cruciate Ligament During Stair Climbing: An In Vivo Study
,”
Arthroscopy: J. Relat. Surg.
0749-8063,
15
, pp.
185
191
.
8.
Fleming
,
B. C.
,
Beynnon
,
B. D.
,
Renstrom
,
P. A.
,
Peura
,
G. D.
,
Nichols
,
C. E.
, and
Johnson
,
R. J.
, 1998, “
The Strain Behavior of the Anterior Cruciate Ligament During Bicycling. An In Vivo Study
,”
Am. J. Sports Med.
0363-5465,
26
, pp.
109
118
.
9.
Andriacchi
,
T. P.
,
Mikosz
,
R. P.
,
Hampton
,
S. J.
, and
Galante
,
J. O.
, 1983, “
Model Studies of the Stiffness Characteristics of the Human Knee Joint
,”
J. Biomech.
0021-9290,
16
, pp.
23
29
.
10.
Mommersteeg
,
T. J. A.
,
Blankevoort
,
L.
,
Huiskes
,
R.
,
Kooloos
,
J. G. M.
, and
Kauer
,
J. M. G.
, 1996, “
Characterization of the Mechanical Behavior of Human Knee Ligaments: A Numerical-Experimental Approach
,”
J. Biomech.
0021-9290,
29
, pp.
151
160
.
11.
Pioletti
,
D. P.
,
Rakotomanana
,
L. R.
,
Benvenuti
,
J. F.
, and
Leyvraz
,
P. F.
, 1998, “
Viscoelastic Constitutive Law in Large Deformations: Application to Human Knee Ligaments and Tendons
,”
J. Biomech.
0021-9290,
31
, pp.
753
757
.
12.
Hirokawa
,
S.
, and
Tsuruno
,
R.
, 2000, “
Three-Dimensional Deformation and Stress Distribution in an Analytical/Computational Model of the Anterior Cruciate Ligament
,”
J. Biomech.
0021-9290,
33
, pp.
1069
1077
.
13.
Cowin
,
S. C.
, 1989,
Bone Mechanics
,
CRC
,
Boca Raton, FL
.
14.
Pioletti
,
D. P.
, 1997, “
Viscoelastic Properties of Soft Tissues: Application to Knee Ligaments and Tendons
,” Ph.D. thesis, Departement de Physique, Ecole Polytechnique Federale de Lausanne, Switzerland.
15.
Song
,
Y.
,
Debski
,
R. E.
,
Musahl
,
V.
,
Thomas
,
M.
, and
Woo
,
S. L.
, 2004, “
A Three Dimensional Finite Element Model of the Human Anterior Cruciate Ligament: A Computational Analysis With Experimental Validation
,”
J. Biomech.
0021-9290,
37
, pp.
383
390
.
16.
Pioletti
,
D. P.
,
Rakotomanana
,
L.
,
Benvenuti
,
J. F.
, and
Leyvraz
,
P. F.
, 1998, “
Finite Element Model of the Human Anterior Cruciate Ligament
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
21
, pp.
221
226
.
17.
Veronda
,
D. R.
, and
Westmann
,
R. A.
, 1970, “
Mechanical Characterization of Skin-Finite Deformations
,”
J. Biomech.
0021-9290,
3
, pp.
111
124
.
18.
Dürselen
,
L.
,
Claes
,
L.
, and
Kiefer
,
H.
, 1995, “
The Influence of Muscle Forces and External Loads on Cruciate Ligament Strain
,”
Am. J. Sports Med.
0363-5465,
23
, pp.
129
136
.
19.
Blomstrom
,
G. L.
,
Livesay
,
G. A.
,
Fujle
,
H.
,
Smith
,
B. A.
,
Kashiwaguchi
,
S.
, and
Woo
,
S. L. Y.
, 1993, “
Distribution of In-Situ Forces Within the Human Anterior Cruciate Ligament
,”
ASME Bioengineering Conference
, pp.
359
362
.
20.
Pena
,
E.
,
Martınez
,
M. A.
,
Calvo
,
B.
,
Palanca
,
D.
, and
Doblare
,
M.
, 2005, “
Finite Element Analysis of the Effect of Meniscal Tears and Meniscectomies on Human Knee Biomechanics
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
20
, pp.
636
644
.
21.
Limbert
,
G.
,
Middleton
,
J.
, and
Taylor
,
M.
, 2004, “
Finite Element Analysis of the Human ACL Subjected to Passive Anterior Tibial Loads
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
7
, pp.
1
8
.
22.
Kowalk
,
D. L.
,
Wojtys
,
E. M.
,
Disher
,
J.
, and
Loubert
,
P.
, 1993, “
Quantitative Analysis of the Measuring Capabilities of the KT-1000 Knee Ligament Arthrometer
,”
Am. J. Sports Med.
0363-5465,
21
(
5
), pp.
744
747
.
23.
Daniel
,
D. M.
,
Stone
,
M. L.
,
Sachs
,
R.
, and
Malcom
,
L. L.
, 1985, “
Instrumented Measurement of Anterior Knee Laxity in Patients With Acute Anterior Cruciate Ligament Disruption
,”
Am. J. Sports Med.
0363-5465,
13
, pp.
401
407
.
24.
Gardiner
,
J. C.
, and
Weiss
,
J. A.
, 2003, “
Subject-Specific Finite Element Analysis of the Human Medial Collateral Ligament During Valgus Knee Loading
,”
J. Orthop. Res.
0736-0266,
21
, pp.
1098
1106
.
You do not currently have access to this content.