Abstract

Permeability of the mineralized bone tissue is a critical element in understanding fluid flow occurring in the lacunar-canalicular porosity (PLC) compartment of bone and its role in bone nutrition and mechanotransduction. However, the estimation of bone permeability at the tissue level is affected by the influence of the vascular porosity in macroscopic samples containing several osteons. In this communication, both analytical and experimental approaches are proposed to estimate the lacunar-canalicular permeability in a single osteon. Data from an experimental stress-relaxation test in a single osteon are used to derive the PLC permeability by curve fitting to theoretical results from a compressible transverse isotropic poroelastic model of a porous annular disk under a ramp loading history (2007, “Compressible and Incompressible Constituents in Anisotropic Poroelasticity: The Problem of Unconfined Compression of a Disk,” J. Mech. Phys. Solids, 55, pp. 161–193; 2008, “The Unconfined Compression of a Poroelastic Annular Cylindrical Disk,” Mech. Mater., 40(6), pp. 507–523). The PLC tissue intrinsic permeability in the radial direction of the osteon was found to be dependent on the strain rate used and within the range of O(1024)O(1025). The reported values of PLC permeability are in reasonable agreement with previously reported values derived using finite element analysis (FEA) and nanoindentation approaches.

1.
Weinbaum
,
S.
,
Cowin
,
S. C.
, and
Yu
,
Z.
, 1994, “
A Model for the Excitation of Osteocytes by Mechanical Loading-Induced Bone Fluid Shear Stresses
,”
J. Biomech.
0021-9290,
27
, pp.
339
360
.
2.
Cowin
,
S. C.
,
Weinbaum
,
S.
, and
Yu
,
Z.
, 1995, “
A Case for Bone Canaliculi as the Anatomical Site of Strain-Generated Potentials
,”
J. Biomech.
0021-9290,
28
, pp.
1281
1296
.
3.
Cowin
,
S. C.
, and
Mehrabadi
,
M. M.
, 2007, “
Compressible and Incompressible Constituents in Anisotropic Poroelasticity: The Problem of Unconfined Compression of a Disk
,”
J. Mech. Phys. Solids
0022-5096,
55
, pp.
161
193
.
4.
Gailani
,
G.
, and
Cowin
,
S. C.
, 2008, “
The Unconfined Compression of a Poroelastic Annular Cylindrical Disk
,”
Mech. Mater.
0167-6636,
40
(
6
), pp.
507
523
.
5.
Armstrong
,
C. G.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1984, “
An Analysis of the Unconfined Compression of Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
106
(
2
), pp.
165
173
.
6.
Cohen
,
B.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1998, “
A Transversely Isotropic Biphasic Model for Unconfined Compression of Growth Plate and Chondroepiphysis
,”
ASME J. Biomech. Eng.
0148-0731,
120
(
4
), pp.
491
496
.
7.
Wu
,
J. Z.
, and
Herzog
,
W.
, 2006, “
Analysis of the Mechanical Behavior of Chondrocytes in Unconfined Compression Tests for Cyclic Loading
,”
J. Biomech.
0021-9290,
39
(
4
), pp.
603
616
.
8.
Yin
,
L.
, and
Elliott
,
D. M.
, 2004, “
A Biphasic and Transversely Isotropic Mechanical Model for Tendon: Application to Mouse Tail Fascicles in Uniaxial Tension
,”
J. Biomech.
0021-9290,
37
(
6
), pp.
907
916
.
9.
Mandel
,
J.
, 1953, “
Consolidation des sols (étude mathématique)
,”
Geotechnique
0016-8505,
3
, pp.
287
299
.
10.
Cooper
,
D. M.
,
Turinsky
,
A. L.
,
Sensen
,
C. W.
, and
Hallgrímsson
,
B.
, 2003, “
Quantitative 3D Analysis of the Canal Network in Cortical Bone by Micro-Computed Tomography
,”
Anat. Rec. B New Anat.
,
274
(
1
), pp.
169
179
. 1552-4906
11.
Cowin
,
S. C.
, 2001,
Bone Mechanics Handbook
, 2nd ed.,
CRC
,
Boca Raton, FL
, pp.
1
10
.
12.
Ascenzi
,
A.
, and
Fabry
,
C.
, 1959, “
Technique for Dissection and Measurement of Refractive Index of Osteons
,”
J. Biophys. Biochem. Cytol.
0095-9901,
6
, pp.
139
143
.
13.
Ascenzi
,
A.
, and
Bonucci
,
E.
, 1968, “
The Compressive Properties of Single Osteons
,”
Anat. Rec.
0003-276X,
161
, pp.
377
391
.
14.
Ascenzi
,
M.
,
Benvenuti
,
A.
,
Mango
,
F.
, and
Similia
,
R.
, 1985, “
Mechanical Hysteresis Loops From Single Osteons: Technical Devices and Preliminary Results
,”
J. Biomech.
0021-9290,
18
(
5
), pp.
391
398
.
15.
Ascenzi
,
A.
,
Baschieri
,
P.
, and
Benvenuti
,
A.
, 1994, “
The Torsional Properties of Single Selected Osteons
,”
J. Biomech.
0021-9290,
27
(
7
), pp.
875
884
.
16.
Frasca
,
P.
,
Harper
,
R. A.
, and
Katz
,
J. L.
, 1976, “
Isolation of Single Osteons and Osteon Lamellae
,”
Acta Anat. (Basel)
0001-5180,
95
, pp.
122
129
.
17.
Dong
,
X. N.
,
Zhang
,
X.
, and
Guo
,
X. E.
, 2005, “
Interfacial Strength of Cement Lines in Human Cortical Bone
,”
Mech. Chem. Biosyst.
1546-2048,
2
(
2
), pp.
63
68
.
18.
Currey
,
J. D.
, 1988, “
The Effect of Drying and Re-Wetting on Some Mechanical Properties of Cortical Bone
,”
J. Biomech.
0021-9290,
21
(
5
), pp.
439
441
.
19.
Goto
,
T.
,
Sasaki
,
N.
, and
Hikichi
,
K.
, 1999, “
Early Stage-Stress Relaxation in Compact Bone
,”
J. Biomech.
0021-9290,
32
(
1
), pp.
93
97
.
20.
Cowin
,
S. C.
, 1999, “
Bone Poroelasticity
,”
J. Biomech.
0021-9290,
32
, pp.
217
238
.
21.
Zhang
,
D.
,
Weinbaum
,
S.
, and
Cowin
,
S. C.
, 1998, “
Estimates of the Peak Pressures in the Bone Pore Water
,”
ASME J. Biomech. Eng.
0148-0731,
120
, pp.
697
703
.
22.
Smit
,
T. H.
,
Huyghe
,
J. M.
, and
Cowin
,
S. C.
, 2002, “
Estimation of the Poroelastic Parameters of Bone
,”
J. Biomech.
0021-9290,
35
, pp.
829
836
.
23.
Oyen
,
M. L.
, 2008, “
Poroelastic Nanoindentation Responses of Hydrated Bone
,”
J. Mater. Res.
0884-2914,
23
, pp.
1307
1314
.
24.
Lei
,
F.
, and
Szeri
,
A. Z.
, 2007, “
Inverse Analysis of Constitutive Models: Biological of Soft Tissues
,”
J. Biomech.
0021-9290,
40
(
4
), pp.
936
940
.
25.
Ashman
,
B.
,
Cowin
,
S. C.
,
Van Buskirk
,
W. C.
, and
Rice
,
J. C.
, 1984, “
A Continuous Wave Technique for the Measurement of the Elastic Properties of Cortical Bone
,”
J. Biomech.
0021-9290,
17
(
5
), pp.
349
361
.
26.
Lang
,
S. B.
, 1970, “
Ultrasonic Method for Measuring Elastic Coefficients of Bone and Results on Fresh and Dried Bovine Bones
,”
IEEE Trans. Biomed. Eng.
0018-9294,
17
(
2
), pp.
101
105
.
27.
Huja
,
S. S.
,
Beck
,
F. M.
, and
Thurman
,
D. T.
, 2006, “
Indentation Properties of Young and Old Osteons
,”
Calcif. Tissue Int.
0171-967X,
78
(
6
), pp.
392
397
.
28.
Otter
,
W. M.
,
Palemieri
,
V. R.
,
Wu
,
D. D.
,
Seiz
,
K. G.
,
MacGinitie
,
L. A.
, and
Cochran
,
G. V. B.
, 1992, “
A Comparative Analysis of Streaming Potentials In Vivo and In Vitro
,”
J. Orthop. Res.
0736-0266,
10
, pp.
710
719
.
You do not currently have access to this content.