Cyclic mechanical loading of articular cartilage results in a complex biomechanical environment at the scale of the chondrocytes that strongly affects cellular metabolic activity. Under dynamic loading conditions, the quantitative relationships between macroscopic loading characteristics and solid and fluid mechanical variables in the local cellular environment are not well understood. In this study, an axisymmetric multiscale model of linear biphasic cell-matrix interactions in articular cartilage was developed to investigate the cellular microenvironment in an explant subjected to cyclic confined compressive loading. The model was based on the displacement-velocity-pressure (u-v-p) mixed-penalty weighted residual formulation of linear biphasic theory that was implemented in the COMSOL MULTIPHYSICS software package. The microscale cartilage environment was represented as a three-zone biphasic region consisting of a spherical chondrocyte with encapsulating pericellular matrix (PCM) that was embedded in a cylindrical extracellular matrix (ECM) subjected to cyclic confined compressive loading boundary conditions. Biphasic material properties for the chondrocyte and the PCM were chosen based on previous in vitro micropipette aspiration studies of cells or chondrons isolated from normal or osteoarthritic cartilage. Simulations performed at four loading frequencies in the range 0.01–1.0 Hz supported the hypothesized dual role of the PCM as both a protective layer for the cell and a mechanical transducer of strain. Time varying biphasic variables at the cellular scale were strongly dependent on relative magnitudes of the loading period, and the characteristic gel diffusion times for the ECM, the PCM, and the chondrocyte. The multiscale simulations also indicated that axial strain was significantly amplified in the range 0.01–1.0 Hz, with a decrease in amplification factor and frequency insensitivity at the higher frequencies. Simulations of matrix degradation due to osteoarthritis indicated that strain amplification factors were more significantly altered when loss of matrix stiffness was exclusive to the PCM. The findings of this study demonstrate the complex dependence of dynamic mechanics in the local cellular environment of cartilage on macroscopic loading features and material properties of the ECM and the chondron.

1.
Stockwell
,
R. A.
, 1979,
Biology of Cartilage Cells
,
Cambridge University Press
,
Cambridge, England
, pp.
126
148
.
2.
Guilak
,
F.
,
Sah
,
R. L.
, and
Setton
,
L. A.
, 1997, “
Physical Regulation of Cartilage Metabolism
,”
Basic Orthopaedic Biomechanics
, edited by
V. C.
Mow
and
W. C.
Hayes
,
Lippincott-Raven
,
Philadelphia
, pp.
179
207
.
3.
Torzilli
,
P. A.
,
Grigiene
,
R.
,
Huang
,
C.
,
Friedman
,
S. M.
,
Doty
,
S. B.
,
Boskey
,
A. L.
, and
Lust
,
G.
, 1997, “
Characterization of Cartilage Metabolic Response to Static and Dynamic Stress Using a Mechanical Explant Test System
,”
J. Biomech.
0021-9290,
30
(
1
), pp.
1
9
.
4.
Steinmeyer
,
J.
, and
Knue
,
S.
, 1997, “
The Proteoglycan Metabolism of Mature Bovine Articular Cartilage Explants Superimposed to Continuously Applied Cyclic Mechanical Loading
,”
Biochem. Biophys. Res. Commun.
0006-291X,
240
(
1
), pp.
216
221
.
5.
Buschmann
,
M. D.
,
Kim
,
Y. J.
,
Wong
,
M.
,
Frank
,
E.
,
Hunziker
,
E. B.
, and
Grodzinsky
,
A. J.
, 1999, “
Stimulation of Aggrecan Synthesis in Cartilage Explants by Cyclic Loading is Localized to Regions of High Interstitial Fluid Flow
,”
Arch. Biochem. Biophys.
0003-9861,
366
(
1
), pp.
1
7
.
6.
Li
,
K. W.
,
Williamson
,
A. K.
,
Wang
,
A. S.
, and
Sah
,
R. L.
, 2001, “
Growth Responses of Cartilage to Static and Dynamic Compression
,”
Clin. Orthop. Relat. Res.
,
391
, pp.
S34
S48
. 0009-921X
7.
Blain
,
E. J.
,
Gilbert
,
S. J.
,
Wardale
,
R. J.
,
Capper
,
S. J.
,
Mason
,
D. J.
, and
Duance
,
V. C.
, 2001, “
Up-Regulation of Matrix Metalloproteinase Expression and Activation Following Cyclical Compressive Loading of Articular Cartilage In Vitro
,”
Arch. Biochem. Biophys.
,
396
(
1
), pp.
49
55
. 0003-9861
8.
Sauerland
,
K.
,
Raiss
,
R. X.
, and
Steinmeyer
,
J.
, 2003, “
Proteoglycan Metabolism and Viability of Articular Cartilage Explants as Modulated by the Frequency of Intermittent Loading
,”
Osteoarthritis Cartilage
,
11
(
5
), pp.
343
350
. 1063-4584
9.
Piscoya
,
J. L.
,
Fermor
,
B.
,
Kraus
,
V. B.
,
Stabler
,
T. V.
, and
Guilak
,
F.
, 2005, “
The Influence of Mechanical Compression on the Induction of Osteoarthritis-Related Biomarkers in Articular Cartilage Explants
,”
Osteoarthritis Cartilage
,
13
(
12
), pp.
1092
1099
. 1063-4584
10.
Palmoski
,
M. J.
, and
Brandt
,
K. D.
, 1984, “
Effects of Static and Cyclic Compressive Loading on Articular Cartilage Plugs In Vitro
,”
Arthritis Rheum.
0004-3591,
27
(
6
), pp.
675
681
.
11.
Sah
,
R. L.
,
Kim
,
Y. J.
,
Doong
,
J. Y.
,
Grodzinsky
,
A. J.
,
Plaas
,
A. H.
, and
Sandy
,
J. D.
, 1989, “
Biosynthetic Response of Cartilage Explants to Dynamic Compression
,”
J. Orthop. Res.
0736-0266,
7
(
5
), pp.
619
636
.
12.
Waldman
,
S. D.
,
Couto
,
D. C.
,
Grynpas
,
M. D.
,
Pilliar
,
R. M.
, and
Kandel
,
R. A.
, 2006, “
A Single Application of Cyclic Loading Can Accelerate Matrix Deposition and Enhance the Properties of Tissue-Engineered Cartilage
,”
Osteoarthritis Cartilage
,
14
(
4
), pp.
323
330
. 1063-4584
13.
Chowdhury
,
T. T.
,
Bader
,
D. L.
, and
Lee
,
D. A.
, 2006, “
Dynamic Compression Counteracts IL-1 Beta Induced iNOS and COX-2 Activity by Human Chondrocytes Cultured in Agarose Constructs
,”
Biorheology
,
43
(
3–4
), pp.
413
429
. 0006-355X
14.
Lee
,
D. A.
,
Noguchi
,
T.
,
Frean
,
S. P.
,
Lees
,
P.
, and
Bader
,
D. L.
, 2000, “
The Influence of Mechanical Loading on Isolated Chondrocytes Seeded in Agarose Constructs
,”
Biorheology
,
37
(
1–2
), pp.
149
161
. 0006-355X
15.
Davisson
,
T.
,
Kunig
,
S.
,
Chen
,
A.
,
Sah
,
R.
, and
Ratcliffe
,
A.
, 2002, “
Static and Dynamic Compression Modulate Matrix Metabolism in Tissue Engineered Cartilage
,”
J. Orthop. Res.
0736-0266,
20
(
4
), pp.
842
848
.
16.
Mauck
,
R. L.
,
Seyhan
,
S. L.
,
Ateshian
,
G. A.
, and
Hung
,
C. T.
, 2002, “
Influence of Seeding Density and Dynamic Deformational Loading on the Developing Structure/Function Relationships of Chondrocyte-Seeded Agarose Hydrogels
,”
Ann. Biomed. Eng.
0090-6964,
30
(
8
), pp.
1046
1056
.
17.
Chowdhury
,
T. T.
,
Bader
,
D. L.
,
Shelton
,
J. C.
, and
Lee
,
D. A.
, 2003, “
Temporal Regulation of Chondrocyte Metabolism in Agarose Constructs Subjected to Dynamic Compression
,”
Arch. Biochem. Biophys.
,
417
(
1
), pp.
105
111
. 0003-9861
18.
Hung
,
C. T.
,
Mauck
,
R. L.
,
Wang
,
C. C. B.
,
Lima
,
E. G.
, and
Ateshian
,
G. A.
, 2004, “
A Paradigm for Functional Tissue Engineering of Articular Cartilage Via Applied Physiologic Deformational Loading
,”
Ann. Biomed. Eng.
0090-6964,
32
(
1
), pp.
35
49
.
19.
Waldman
,
S. D.
,
Spiteri
,
C. G.
,
Grynpas
,
M. D.
,
Pilliar
,
R. M.
, and
Kandel
,
R. A.
, 2004, “
Long-Term Intermittent Compressive Stimulation Improves the Composition and Mechanical Properties of Tissue-Engineered Cartilage
,”
Tissue Eng.
1076-3279,
10
(
9–10
), pp.
1323
1331
.
20.
Lee
,
D. A.
, and
Bader
,
D. L.
, 1997, “
Compressive Strains at Physiological Frequencies Influence the Metabolism of Chondrocytes Seeded in Agarose
,”
J. Orthop. Res.
0736-0266,
15
(
2
), pp.
181
188
.
21.
Waldman
,
S. D.
,
Spiteri
,
C. G.
,
Grynpas
,
M. D.
,
Pilliar
,
R. M.
,
Hong
,
J.
, and
Kandel
,
R. A.
, 2003, “
Effect of Biomechanical Conditioning on Cartilaginous Tissue Formation In Vitro
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
85
, pp.
101
105
.
22.
Suh
,
J. K.
,
Baek
,
G. H.
,
Aroen
,
A.
,
Malin
,
C. M.
,
Niyibizi
,
C.
,
Evans
,
C. H.
, and
Westerhausen-Larson
,
A.
, 1999, “
Intermittent Sub-Ambient Interstitial Hydrostatic Pressure as a Potential Mechanical Stimulator for Chondrocyte Metabolism
,”
Osteoarthritis Cartilage
,
7
(
1
), pp.
71
80
. 1063-4584
23.
Angele
,
P.
,
Schumann
,
D.
,
Angele
,
M.
,
Kinner
,
B.
,
Englert
,
C.
,
Hente
,
R.
,
Fuchtmeier
,
B.
,
Nerlich
,
M.
,
Neumann
,
C.
, and
Kujat
,
R.
, 2004, “
Cyclic, Mechanical Compression Enhances Chondrogenesis of Mesenchymal Progenitor Cells in Tissue Engineering Scaffolds
,”
Biorheology
,
41
(
3–4
), pp.
335
346
. 0006-355X
24.
Elder
,
S. H.
,
Goldstein
,
S. A.
,
Kimura
,
J. H.
,
Soslowsky
,
L. J.
, and
Spengler
,
D. M.
, 2001, “
Chondrocyte Differentiation is Modulated by Frequency and Duration of Cyclic Compressive Loading
,”
Ann. Biomed. Eng.
0090-6964,
29
(
6
), pp.
476
482
.
25.
Kelly
,
T. A.
,
Wang
,
C. C.
,
Mauck
,
R. L.
,
Ateshian
,
G. A.
, and
Hung
,
C. T.
, 2004, “
Role of Cell-Associated Matrix in the Development of Free-Swelling and Dynamically Loaded Chondrocyte-Seeded Agarose Gels
,”
Biorheology
,
41
(
3–4
), pp.
223
237
. 0006-355X
26.
Grodzinsky
,
A. J.
,
Levenston
,
M. E.
,
Jin
,
M.
, and
Frank
,
E. H.
, 2000, “
Cartilage Tissue Remodeling in Response to Mechanical Forces
,”
Annu. Rev. Biomed. Eng.
1523-9829,
2
, pp.
691
713
.
27.
Wilkins
,
R. J.
,
Browning
,
J. A.
, and
Urban
,
J. P. G.
, 2000, “
Chondrocyte Regulation by Mechanical Load
,”
Biorheology
,
37
(
1–2
), pp.
67
74
. 0006-355X
28.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
, 1980, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
J. Biomech. Eng.
,
102
(
1
), pp.
73
84
. 0148-0731
29.
Guilak
,
F.
,
Ratcliffe
,
A.
, and
Mow
,
V. C.
, 1995, “
Chondrocyte Deformation and Local Tissue Strain in Articular Cartilage: A Confocal Microscopy Study
,”
J. Orthop. Res.
0736-0266,
13
(
3
), pp.
410
421
.
30.
Choi
,
J. B.
,
Youn
,
I.
,
Cao
,
L.
,
Leddy
,
H. A.
,
Gilchrist
,
C. L.
,
Setton
,
L. A.
, and
Guilak
,
F.
, 2007, “
Zonal Changes in the Three-Dimensional Morphology of the Chondron Under Compression: The Relationship Among Cellular, Pericellular, and Extracellular Deformation in Articular Cartilage
,”
J. Biomech.
,
40
(
12
), pp.
2596
2603
. 0021-9290
31.
Chahine
,
N. O.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
, 2007, “
In-Situ Measurements of Chondrocyte Deformation Under Transient Loading
,”
Eur. Cells Mater
,
13
, pp.
100
111
. 1473-2262
32.
Schinagl
,
R. M.
,
Gurskis
,
D.
,
Chen
,
A. C.
, and
Sah
,
R. L.
, 1997, “
Depth-Dependent Confined Compression Modulus of Full-Thickness Bovine Articular Cartilage
,”
J. Orthop. Res.
0736-0266,
15
(
4
), pp.
499
506
.
33.
Suh
,
J. K.
,
Li
,
Z.
, and
Woo
,
S. L.
, 1995, “
Dynamic Behavior of a Biphasic Cartilage Model Under Cyclic Compressive Loading
,”
J. Biomech.
0021-9290,
28
(
4
), pp.
357
364
.
34.
Suh
,
J. K.
, 1996, “
Dynamic Unconfined Compression of Articular Cartilage Under a Cyclic Compressive Load
,”
Biorheology
0006-355X,
33
(
4–5
), pp.
289
304
.
35.
Poole
,
C. A.
,
Flint
,
M. H.
, and
Beaumont
,
B. W.
, 1987, “
Chondrons in Cartilage: Ultrastructural Analysis of the Pericellular Microenvironment in Adult Human Articular Cartilages
,”
J. Orthop. Res.
0736-0266,
5
(
4
), pp.
509
522
.
36.
Poole
,
C. A.
,
Wotton
,
S. F.
, and
Duance
,
V. C.
, 1988, “
Localization of Type IX Collagen in Chondrons Isolated From Porcine Articular Cartilage and Rat Chondrosarcoma
,”
Histochem. J.
,
20
(
10
), pp.
567
574
. 0018-2214
37.
Poole
,
C. A.
,
Ayad
,
S.
, and
Schofield
,
J. R.
, 1988, “
Chondrons From Articular Cartilage: I. Immunolocalization of Type VI Collagen in the Pericellular Capsule of Isolated Canine Tibial Chondrons
,”
J. Cell. Sci.
,
90
(
Pt 4
), pp.
635
643
. 0021-9533
38.
Lee
,
G. M.
,
Paul
,
T. A.
,
Slabaugh
,
M.
, and
Kelley
,
S. S.
, 1997, “
The Pericellular Matrix is Enlarged in Osteoarthritic Cartilage
,”
Trans. Annu. Meet. - Orthop. Res. Soc.
0149-6433,
22
, p.
495
.
39.
Guilak
,
F.
,
Alexopoulos
,
L. G.
,
Haider
,
M. A.
,
Ting-Beall
,
H. P.
, and
Setton
,
L. A.
, 2005, “
Zonal Uniformity in Mechanical Properties of the Chondrocyte Pericellular Matrix: Micropipette Aspiration of Canine Chondrons Isolated by Cartilage Homogenization
,”
Ann. Biomed. Eng.
0090-6964,
33
(
10
), pp.
1312
1318
.
40.
Alexopoulos
,
L. G.
,
Haider
,
M. A.
,
Vail
,
T. P.
, and
Guilak
,
F.
, 2003, “
Alterations in the Mechanical Properties of the Human Chondrocyte Pericellular Matrix With Osteoarthritis
,”
J. Biomech. Eng.
0148-0731,
125
(
3
), pp.
323
333
.
41.
Alexopoulos
,
L. G.
,
Williams
,
G. M.
,
Upton
,
M. L.
,
Setton
,
L. A.
, and
Guilak
,
F.
, 2005, “
Osteoarthritic Changes in the Biphasic Mechanical Properties of the Chondrocyte Pericellular Matrix in Articular Cartilage
,”
J. Biomech.
0021-9290,
38
(
3
), pp.
509
517
.
42.
Alexopoulos
,
L. G.
,
Setton
,
L. A.
, and
Guilak
,
F.
, 2005, “
The Biomechanical Role of the Chondrocyte Pericellular Matrix in Articular Cartilage
,”
Acta Biomaterialia
,
1
(
3
), pp.
317
325
. 1742-7061
43.
Wu
,
J. Z.
, and
Herzog
,
W.
, 2006, “
Analysis of the Mechanical Behavior of Chondrocytes in Unconfined Compression Tests for Cyclic Loading
,”
J. Biomech.
0021-9290,
39
(
4
), pp.
603
616
.
44.
Guilak
,
F.
, and
Mow
,
V. C.
, 2000, “
The Mechanical Environment of the Chondrocyte: A Finite Element Model of Cell-Matrix Interactions in Articular Cartilage
,”
J. Biomech.
0021-9290,
33
, pp.
1663
1673
.
45.
Trickey
,
W. R.
,
Lee
,
G. M.
, and
Guilak
,
F.
, 2000, “
Viscoelastic Properties of Chondrocytes From Normal and Osteoarthritic Human Cartilage
,”
J. Orthop. Res.
0736-0266,
18
, pp.
891
898
.
46.
Trickey
,
W. R.
,
Baaijens
,
F. P.
,
Laursen
,
T. A.
,
Alexopoulos
,
L. G.
, and
Guilak
,
F.
, 2006, “
Determination of the Poisson’s Ratio of the Cell: Recovery Properties of Chondrocytes After Release From Complete Micropipette Aspiration
,”
J. Biomech.
,
39
(
1
), pp.
78
87
. 0021-9290
47.
Spilker
,
R.
, and
Maxian
,
T. A.
, 1990, “
A Mixed-Penalty Finite Element Formulation of the Linear Bipasic Theory for Soft Tissues
,”
Int. J. Numer. Methods Eng.
0029-5981,
30
, pp.
1063
1082
.
48.
Brown
,
P. N.
,
Hindmarsh
,
A. C.
, and
Petzold
,
L. R.
, 1994, “
Using Krylov Methods in the Solution of Large-Scale Differential Algebraic Systems
,”
SIAM J. Comput.
,
15
, pp.
1467
1488
. 1064-8275
49.
Davis
,
T. A.
, 2004, “
A Column Pre-Ordering Strategy for the Unsymmetric-Patterns Multifrontal Method
,”
ACM Trans. Math. Softw.
,
30
, pp.
165
195
. 0098-3500
50.
Haider
,
M. A.
, 2004, “
A Radial Biphasic Model for Local Cell-Matrix Mechanics in Articular Cartilage
,”
SIAM J. Appl. Math.
0036-1399,
64
, pp.
1588
1608
.
51.
Hou
,
J. S.
,
Holmes
,
M. H.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1989, “
Boundary Conditions at the Cartilage-Synovial Fluid Interface for Joint Lubrication and Theoretical Verifications
,”
J. Biomech. Eng.
,
111
(
1
), pp.
78
87
. 0148-0731
52.
Ng
,
K. W.
,
Mauck
,
R. L.
,
Statman
,
L. Y.
,
Lin
,
E. Y.
,
Ateshian
,
G. A.
, and
Hung
,
C. T.
, 2006, “
Dynamic Deformational Loading Results in Selective Application of Mechanical Stimulation in a Layered, Tissue-Engineered Cartilage Construct
,”
Biorheology
,
43
(
3–4
), pp.
497
507
. 0006-355X
You do not currently have access to this content.