Background: The management of soft tissue balance during surgery is essential for the success of total knee arthroplasty (TKA) but remains difficult, leaving it much to the surgeon’s feel. Previous assessments for soft tissue balance have been performed under unphysiological joint conditions, with patellar eversion and without the prosthesis only at extension and 90 deg of flexion. We therefore developed a new tensor for TKA procedures, enabling soft tissue balance assessment throughout the range of motion while reproducing postoperative joint alignment with the patellofemoral (PF) joint reduced and the tibiofemoral joint aligned. Our purpose in the present study was to clarify joint gap kinematics using the tensor with the CT-free computer assisted navigation system. Method of Approach: Joint gap kinematics, defined as joint gap change during knee motion, was evaluated during 30 consecutive, primary posterior-stabilized (PS) TKA with the navigation system in 30 osteoarthritic patients. Measurements were performed using a newly developed tensor, which enabled the measurement of the joint gap throughout the range of motion, including the joint conditions relevant after TKA with PF joint reduced and trial femoral component in place. Joint gap was assessed by the tensor at full extension, 5 deg, 10 deg, 15 deg, 30 deg, 45 deg, 60 deg, 90 deg, and 135 deg of flexion with the patella both everted and reduced. The navigation system was used to obtain the accuracy of implantations and to measure an accurate flexion angle of the knee during the intraoperative joint gap measurement. Results: Results showed that the joint gap varied depending on the knee flexion angle. Joint gap showed an accelerated decrease during full knee extension. With the PF joint everted, the joint gap increased throughout knee flexion. In contrast, the joint gap with the PF joint reduced increased with knee flexion but decreased after 60 deg of flexion. Conclusions: We clarified the characteristics of joint gap kinematics in PS TKA under physiological and reproducible joint conditions. Our findings can provide useful information for prosthetic design and selection and allow evaluation of surgical technique throughout the range of knee motion that may lead to consistent clinical outcomes after TKA.

1.
Dorr
,
L. D.
, and
Boiardo
,
R. A.
, 1986, “
Technical Consideration in Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
0009-921X,
205
, pp.
5
11
.
2.
Insall
,
J. N.
,
Binazzi
,
R.
,
Soudry
,
M.
, and
Mestriner
,
L. A.
, 1985, “
Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
0009-921X,
192
, pp.
13
22
.
3.
Insall
,
J. N.
,
Tria
,
A. J.
, and
Scott
,
W. N.
, 1979, “
The Total Condylar Knee Prosthesis: The First 5Years
, ”
Clin. Orthop. Relat. Res.
0009-921X,
145
, pp.
68
77
.
4.
Siebert
,
W.
,
Mai
,
S.
,
Kober
,
R.
, and
Heeckt
,
P. F.
, 2002, “
Technique and First Clinical Results of Robot-Assisted Total Knee Replacement
,”
The Knee
0968-0160,
9
, pp.
173
180
.
5.
Sparmann
,
M.
,
Wolke
,
B.
,
Czupalla
,
H.
,
Banzer
,
D.
, and
Zink
,
A.
, 2003, “
Positioning of Total Knee Arthroplasty With and Without Navigation Support. A. Prospective, Randomized Study
,”
J. Bone Joint Surg. Br.
0301-620X,
85-B
, pp.
830
835
.
6.
Stulberg
,
S. D.
,
Loan
,
P.
, and
Sarin
,
V.
, 2002, “
Computer-Assisted Navigation in Total Knee Replacement: Results of an Initial Experience in Thirty-Five Patients
,”
J. Bone Joint Surg. Br.
0301-620X,
84-A
, pp.
90
98
.
7.
Matsumoto
,
T.
,
Tsumura
,
N.
,
Kurosaka
,
M.
,
Muratsu
,
H.
,
Kuroda
,
R.
,
Ishimoto
,
K.
,
Tsujimoto
,
K.
,
Shiba
,
R.
, and
Yoshiya
,
S.
, 2004, “
Prosthetic Alignment and Sizing in Computer-Assisted Total Knee Arthroplasty
,”
Int. Orthop.
0341-2695,
28
, pp.
282
285
.
8.
Matsumoto
,
T.
,
Tsumura
,
N.
,
Kurosaka
,
M.
,
Muratsu
,
H.
,
Yoshiya
,
S.
, and
Kuroda
,
R.
, “
Clinical Values in Computer-Assisted Total Knee Arthroplasty
,”
Orthopedics
0147-7447 , in press.
9.
Fehring
,
T. K.
,
Odum
,
S.
,
Griffin
,
W. L.
,
Mason
,
J. B.
, and
Nadaud
,
M.
, 2001, “
Early Failures in Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
0009-921X,
392
, pp.
315
318
.
10.
Sharkey
,
P. F.
,
Hozack
,
W. J.
,
Rothman
,
R. H.
,
Shastri
,
S.
, and
Jacoby
,
S M.
, 2002, “
Insall Award Paper. Why are Total Knee Arthroplasties Failing Today?
,”
Clin. Orthop. Relat. Res.
0009-921X,
404
, pp.
7
13
.
11.
Griffin
,
F. M.
,
Insall
,
J. N.
, and
Scuderi
,
G. R.
, 2000, “
Accuracy of Soft Tissue Balancing in Total Knee Arthroplasty
,”
J. Arthroplasty
0883-5403,
15
, pp.
970
973
.
12.
Insall
,
J. N.
, and
Easley
,
M. E.
, 2001, “
Surgical Techniques and Instrumentation in Total Knee Arthroplasty
,”
Surgery of the knee
3rd ed., edited by
J. N.
Insall
, and
W. N.
Scott
,
Churchill Livingstone
,
New York
, pp.
1553
.
13.
Laskin
,
R. S.
, and
Rieger
,
M. A.
, 1989, “
The Surgical Technique for Performing a Total Knee Replacement Arthroplasty
,”
Orthop. Clin. North Am.
0030-5898,
20
, pp.
31
48
.
14.
Sambatakakis
,
A.
,
Attfield
,
S. F.
, and
Newton
,
G.
, 1993, “
Quantification of Soft-Tissue Imbalance in Condylar Knee Arthroplasty
,”
J. Biomed. Eng.
0141-5425,
15
, pp.
339
343
.
15.
Winemaker
,
M. J.
, 2002, “
Perfect Balance in Total Knee Arthroplasty
,”
J. Arthroplasty
0883-5403,
17
, pp.
2
10
.
16.
Attfield
,
S. F.
,
Warren-Forward
,
M.
,
Wilton
,
T.
,
Sambatakakis
,
A.
, 1994, “
Measurement of Soft Tissue Imbalance in Total Knee Arthroplasty Using Electronic Instrumentation
,”
Med. Eng. Phys.
1350-4533,
16
, pp.
501
505
.
17.
Morris
,
B. A.
,
D’Lima
,
D. D.
,
Slamin
,
J.
,
Kovacevic
,
N.
,
Arms
,
S. W.
,
Townsend
,
C. P.
,
Colwell
,
C. W.
, Jr.
, 2001, “
e-Knee: Evolution of the Electronic Knee Prosthesis
,”
J. Bone Joint Surg. Br.
0301-620X,
83-A
, pp.
62
66
.
18.
Muratsu
,
H.
,
Tsumura
,
N.
,
Yamaguchi
,
M.
,
Mizuno
,
K.
,
Kuroda
,
R.
,
Harada
,
T.
,
Yoshiya
,
S.
,
Kurosaka
,
M.
, 2003, “
Patellar Eversion Affects Soft Tissue Balance in Total Knee Arthroplasty
,”
Trans. Annu. Meet. - Orthop. Res. Soc.
0149-6433,
28
, pp.
242
.
19.
Edwards
,
J. Z.
,
Greene
,
K. A.
,
Davis
,
R. S.
,
Kovacik
,
M. W.
,
Noe
,
D. A.
, and
Askew
,
M. J.
, 2004, “
Measuring Flexion in Knee Arthroplasty Patients
,”
J. Arthroplasty
0883-5403,
19
, pp.
369
372
.
20.
Herald
,
J.
,
Cooper
,
L.
, and
Machart
,
F.
, 2002, “
Tourniquet-Induced Restriction of the Quadriceps Muscle Mechanism
,”
J. Bone Joint Surg. Br.
0301-620X,
84-B
, pp.
856
857
.
21.
Marson
,
B. M.
, and
Tokish
,
J. T.
, 1999, “
The Effect of a Tourniquet on Intraoperative Patellofemoral Tracking During Total Knee Arthroplasty
,”
J. Arthroplasty
0883-5403,
14
, pp.
197
199
.
22.
Laskin
,
R. S.
, 2001, “
Lateral Release Rates After Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
0009-921X,
392
, pp.
88
93
.
23.
Banks
,
S. A.
,
Markovich
,
G. D.
, and
Hodge
,
W. A.
, 1997, “
In Vivo Kinematics of Cruciate-retaining and—Substituting Knee Arthroplasties
,”
J. Arthroplasty
0883-5403,
12
, pp.
297
304
.
24.
Bellemans
,
J.
,
Banks
,
S.
,
Victor
,
J.
,
Vandenneucker
,
H.
, and
Moemans
,
A.
, 2002, “
Fluoroscopic Analysis of the Kinematics of Deep Flexion in Total Knee Arthroplasty. Influence of Posterior Condylar Offset
,”
J. Bone Joint Surg. Br.
0301-620X,
84-B
, pp.
50
53
.
25.
Dennis
,
D. A.
,
Komistek
,
R. D.
,
Walker
,
S. A.
,
Cheal
,
E. J.
, and
Stiehl
,
J. B.
, 2001, “
Femoral Condylar Lift-Off In Vivo in Total Knee Arthroplasty
,”
J. Bone Joint Surg. Br.
0301-620X,
83-B
, pp.
33
39
.
You do not currently have access to this content.